Semiparametric inference of survival data

生存数据的半参数推断

基本信息

项目摘要

We developed methods to build confidence interval and bands to detect time-varying effects of treatments in Cox's proportional hazards regression model. Dr. Sundaram and her collaborators have addressed in the need for statistical inference which in confidence intervals and confidence bands which give more tighter intervals than the standard Wald-type (normal approximation based) confidence intervals/band. This work extended the results of Tian, Zucker and Wei (2005, JASA) and shows that the proposed intervals/bands are tighter than those proposed by Tian, Zucker and Wei. This was achieved by developing empirical likelihood (EL) point-wise confidence regions for the time-dependent regression coefficients via local partial likelihood smoothing. Asymptotic properties were established for the proposed methods. Extensive numerical studies conducted indicated that the EL point-wise/simultaneous confidence regions/bands have better performance than the Wald-type estimators. The proposed methods illustrated on two real examples: the gastric cancer data and the Mayo Clinic primary biliary cirrhosis data showed similar findings of more precise (narrower) confidence intervals (bands). Another project developed method for randomly truncated data which are frequently encountered when the study design is retrospective and/or due to inability of experimental design to be able to capture the study participant before the initiation of the event. For example, pregnant women get selected based on their first visit to the gynecologist for confirming their pregnancy, resulting in loss to follow up of women who had early pregnancy loss. Estimation based on randomly truncated data becomes very challenging as the risk set over time is non-monotonic, making it very different from random right censoring. One of the problems addressed by Dr. Sundaram is developing robust inference for two sample accelerated failure time data for this type of data. Dr. Sundaram has also developed robust methods for analyzing proportional odds model for randomly truncated data. Proportional odds model provides a useful alternative to proportional hazards when the hazards converge over time (e.g., for modeling treatments that are successful). The large sample properties like asymptotic normality and strong consistency of the proposed estimators were established and the finite sample properties investigated through extensive simulations indicating good performance. The proposed methods are easy to compute, which is not the case with likelihood based estimators as it is not possible to profile out the non-parametric (baseline odds function) as is done with proportional hazards and right censored data.
我们开发了建立置信区间和带的方法,以检测考克斯比例风险回归模型中治疗的时变效应。Sundaram博士和她的合作者已经解决了在置信区间和置信带中的统计推断的需要,这些置信区间和置信带给出比标准Wald型(基于正态近似)置信区间/带更紧的区间。这项工作扩展了Tian,Zucker和Wei(2005,JASA)的结果,并表明所提出的间隔/带比Tian,Zucker和Wei提出的更紧。 这是通过开发经验似然(EL)逐点置信区域的时间依赖性回归系数通过局部偏似然平滑。所提出的方法的渐近性质。 进行了大量的数值研究表明,EL逐点/同时置信区/带有更好的性能比Wald型估计。 所提出的方法说明了两个真实的例子:胃癌数据和马约诊所原发性胆汁性肝硬化数据显示出更精确(窄)的置信区间(带)的类似结果。 另一个项目开发了随机截断数据的方法,当研究设计是回顾性的和/或由于实验设计无法在事件开始前捕获研究参与者时,经常会遇到这种情况。例如,孕妇是根据她们第一次去妇科医生那里确认怀孕而被选中的,这导致了早期流产的妇女无法随访。基于随机截断数据的估计变得非常具有挑战性,因为随着时间的推移风险集是非单调的,这使得它与随机右删失非常不同。 Sundaram博士解决的问题之一是为这类数据的两个样本加速失效时间数据开发鲁棒性推断。Sundaram博士还开发了用于分析随机截断数据的比例优势模型的稳健方法。当风险随时间收敛时(例如,用于对成功的治疗进行建模)。建立了估计量的渐近正态性和强相合性等大样本性质,并通过大量的模拟研究了有限样本性质,表明了良好的性能。所提出的方法易于计算,而基于似然估计的情况并非如此,因为不可能像比例风险和右删失数据那样描绘出非参数(基线优势函数)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajeshwari Sundaram其他文献

Rajeshwari Sundaram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajeshwari Sundaram', 18)}}的其他基金

The analysis of survival data
生存数据分析
  • 批准号:
    8736914
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
Statistical Modeling of Human Fecundity
人类生育力的统计模型
  • 批准号:
    10268067
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
The analysis of survival data
生存数据分析
  • 批准号:
    8149372
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
The analysis of survival data
生存数据分析
  • 批准号:
    8553962
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
Statistical Modeling of Human Fecundity
人类生育力的统计模型
  • 批准号:
    8149388
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
The analysis of survival data
生存数据分析
  • 批准号:
    7968790
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
Statistical Modeling of Human Fecundity
人类生育力的统计模型
  • 批准号:
    9550414
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
Longitudinal Investigation of Fertility and the Environment
生育力与环境的纵向调查
  • 批准号:
    10928024
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
The analysis of survival data
生存数据分析
  • 批准号:
    10928025
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:
Statistical Modeling of Human Fecundity
人类生育力的统计模型
  • 批准号:
    10928026
  • 财政年份:
  • 资助金额:
    $ 10.89万
  • 项目类别:

相似海外基金

Advancing entirely virus-free CRISPR CAR T cells to clinic- Are they as good as lentiviral CAR?
将完全无病毒的CRISPR CAR T细胞推向临床——它们和慢病毒CAR一样好吗?
  • 批准号:
    MR/Y503496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Research Grant
De Montfort University and Edward C. Buckwald Limited, t/a Abbots Langley Clinic KTP 23_24 R2
德蒙福特大学和 Edward C. Buckwald Limited,t/a Abbots Langley Clinic KTP 23_24 R2
  • 批准号:
    10078961
  • 财政年份:
    2024
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Knowledge Transfer Partnership
Identifying mechanisms and novel treatments of bone pain - closing the gap to the clinic. BonePainIII
确定骨痛的机制和新疗法——缩小与临床的差距。
  • 批准号:
    EP/Y036956/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Research Grant
Indigenous Youth's Experiences of Accessing Sexual Health & Reproductive Care at the Foundry Victoria, an Integrated Primary Health Care Youth Clinic
原住民青年获得性健康的经历
  • 批准号:
    499260
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Operating Grants
Study on improvement of the medical care environment through plastic arts activities in a pediatric outpatient clinic of a hospital
某医院儿科门诊造型艺术活动改善医疗环境的研究
  • 批准号:
    23K19170
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSTP at Mayo Clinic Rochester
罗切斯特梅奥诊所的 MSTP
  • 批准号:
    10409857
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
Treating Maternal Depression in an Urban Community-Based Pediatric Asthma Clinic: Targeting Maternal Mood, Child Asthma Outcomes, and Health Disparities
在城市社区小儿哮喘诊所治疗孕产妇抑郁症:针对孕产妇情绪、儿童哮喘结果和健康差异
  • 批准号:
    10723233
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
  • 批准号:
    10761940
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
Patient, family and clinic staff perspectives on services for cancer-related cognitive impairment
患者、家属和诊所工作人员对癌症相关认知障碍服务的看法
  • 批准号:
    486999
  • 财政年份:
    2023
  • 资助金额:
    $ 10.89万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了