Real-time Single-Molecule Analysis for Transient Molec. Complex Characterization
瞬态分子的实时单分子分析。
基本信息
- 批准号:7749100
- 负责人:
- 金额:$ 19.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2011-09-14
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsBasic ScienceBehaviorBindingBiologicalBiological AssayBiological ProcessBiophysicsBiosensing TechniquesCellsColorCommunitiesComplementComplexComplicationDNADNA-Directed RNA PolymeraseDetectionDevelopmentDiagnosticDiffuseDimensionsDisease ProgressionDrug DesignDrug IndustryDrug Resistant TuberculosisEnvironmental Risk FactorEquilibriumEscherichia coliExtreme drug resistant tuberculosisFluorescenceFluorescence Resonance Energy TransferFluorescent ProbesGenetic RecombinationGenetic TranscriptionGoalsHeadHeterogeneityImageIndividualKineticsLabelLasersLeadMethicillin ResistanceMethodologyMethodsMicroscopyModelingMolecularMolecular ConformationMolecular MachinesMonitorMulti-Drug ResistanceMultidrug-Resistant TuberculosisMutationNatureOpticsPathway interactionsPeptide Initiation FactorsPhasePreparationProceduresProcessProteinsRelative (related person)ResearchResolutionSamplingSchemeSignal TransductionSisterSiteSolutionsSorting - Cell MovementSpectrum AnalysisStaphylococcus aureusStretchingStructureStructure-Activity RelationshipTechnologyTimeTranscription ElongationTranscription InitiationTranscription ProcessTranslationsVancomycin resistant enterococcusWorkbasedrug developmentflexibilityfluorophoreimprovedinhibitor/antagonistinnovationinstrumentinstrumentationmacromoleculemethicillin resistant Staphylococcus aureusmillisecondmolecular dynamicsnext generationpromoterprototypepublic health relevancesingle moleculesingle-molecule FRETspatiotemporalstoichiometrystructural biologytwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Single-molecule fluorescence resonance energy transfer (smFRET) has rapidly developed to answer fundamental questions about biological mechanisms, providing detailed views of molecular machines at work. Nesher Technologies, Inc. (NTI) was established to commercialize an innovative quantitative, ultrasensitive and -specific single-molecule biodetection technology with exquisite multiplexing potential and simplified sample handling procedures. It was pioneered at the UCLA Single Molecule Biophysics Lab, which is headed by Prof. Shimon Weiss. The technology is based on alternating-laser excitation (ALEX) of single molecules labeled with fluorescent probes. In addition to its suitability for diagnostics, ALEX has been employed recently to study the dynamics of molecular processes such as transcription initiation and elongation using smFRET. In two-color (2c)-ALEX, employing two alternating lasers to study molecular interactions (through probe stoichiometry ratio S and/or FRET efficiency E) and intramolecular distances for analysis of conformation and mechanism (through E), molecules are sorted in a two-dimensional histogram of S and E. In 3c-ALEX, molecules are sorted in three-dimensional S and E histograms, substantially extending the capabilities of 2c- ALEX. ALEX can be performed with diffusing molecules, enabling analysis of equilibrium behaviors of single molecules, or with immobilized molecules using millisecond-scale ALEX dynamic imaging (ALEX-DI). The ALEX-DI methodology, employing total-internal-reflection optical microscopy, has the advantage over its sister methodology, confocal microsecond-scale ALEX spectroscopy, that non-equilibrium time trajectories can be established to follow kinetics of individual molecules and complexes. Detailed stochastic molecule information on complex composition and function can be obtained as well. The ability to monitor individual molecules for long stretches of time adds a whole new dimension with dynamic information ranging from milliseconds to minutes. Higher-order FRET schemes can also be applied to probe transient multi-component interactions or spatiotemporal relationships between different conformational changes in large molecular complexes. NTI's long-term goal is development of a fully integrated 5-color ALEX-based instrument suitable for transient molecular complex characterization. The high-resolution power to monitor molecular interactions and conformational dynamics will also greatly aid structure-guided rational drug design endeavors. For Phase I, we propose to extend 2-color ALEX-DI to enable 3-color and 4-color functionality. Specific aims are: 1. Construction of an instrument for single-molecule total-internal-reflection optical microscopy with 4-color alternating-laser-excitation and dynamic imaging (4c-ALEX-DI). 2. Preparation of fluorophore-labeled bacterial transcription initiation complex components. 3. Use of 4c-ALEX-DI in 3-color and 4-color mode to detect and characterize DNA-scrunching in immobilized RNA polymerase (RNAP)-promoter initial transcribing complexes (RPitc), as well as promoter escape. PUBLIC HEALTH RELEVANCE: The proposed multi-color alternating-laser excitation (ALEX)-based single-molecule method for identifying and characterizing transient molecular complexes will vastly improve the ability to gather molecular information, which in turn will enhance our ability to understand the complex effects that subtle mutations and/or environmental factors have in the development and progression of diseases. The ALEX technology, highly useful for basic research as well as drug development applications, can complement structural analysis of biomolecules and their complexes, especially for species intractable by conventional structural biology methods due to excessive heterogeneity, limited stability, large size, presence of flexible domains, and/or transient nature. As an example, the proposed instrumentation will be able to facilitate detailed mechanistic studies of the bacterial transcription process, allowing rapid development of next-generation antibiotics (e.g. inhibitors of bacterial transcription at new sites of the transcription machinery), which is of critical importance for effective control of globally emerging multi-drug resistant bacterial strains, such as multidrug-resistant tuberculosis (MDR TB), extensively drug-resistant tuberculosis (XDR TB), methicillin-resistant Staphylococcus aureus (MRSA),and vancomycin-resistant enterococci (VRE).
描述(申请人提供):单分子荧光共振能量转移(SmFRET)已经迅速发展,以回答有关生物机制的基本问题,提供工作中的分子机器的详细视图。Nesher Technologies,Inc.(NTI)的成立是为了将一种创新的定量、超灵敏和特定的单分子生物检测技术商业化,该技术具有精致的多路复用潜力和简化的样品处理程序。它是由加州大学洛杉矶分校单分子生物物理实验室率先提出的,该实验室由西蒙·韦斯教授领导。这项技术是基于用荧光探针标记的单分子的交替激光激发(Alex)。除了适用于诊断,ALEX最近还被用来研究分子过程的动力学,如使用smFRET的转录起始和延伸。在双色(2c)-Alex中,使用两个交替的激光来研究分子相互作用(通过探针化学计量比S和/或FRET效率E)和分子内距离来分析构象和机理(通过E),分子被分类在S和E的二维直方图中。在3c-Alex中,分子被分类在三维S和E直方图中,大大扩展了2c-Alex的能力。亚历克斯可以对扩散的分子执行,从而能够分析单分子的平衡行为,也可以使用毫秒尺度的亚历克斯动态成像(Alex-DI)对固定化的分子执行亚历克斯。使用全内反射光学显微镜的Alex-DI方法比其姊妹方法--共聚焦微秒尺度的Alex光谱具有优势,即可以建立非平衡时间轨迹来跟踪单个分子和络合物的动力学。还可以获得有关复杂组成和功能的详细随机分子信息。长时间监测单个分子的能力增加了一个全新的维度,具有从毫秒到几分钟的动态信息。高阶FRET方法也可用于探测大分子复合体中不同构象变化之间的瞬时多组分相互作用或时空关系。NTI的长期目标是开发一种完全集成的5色ALEX仪器,适用于瞬时分子络合物的表征。监测分子相互作用和构象动力学的高分辨率能力也将极大地帮助结构指导的合理药物设计努力。对于第一阶段,我们建议扩展双色Alex-DI以启用三色和四色功能。具体目标是:1.建立四色交替激光激发动态成像的单分子全内反射光学显微镜装置(4C-ALEX-DI)。2.荧光标记细菌转录起始复合体成分的制备3.用4c-Alex-DI三色和四色模式检测和表征固定化RNA聚合酶(RNAP)-启动子初始转录复合体(RPitc)中DNA的收缩和启动子逃逸。与公共卫生相关:建议的基于多色交替激光激发(Alex)的单分子方法用于识别和表征瞬时分子复合体,将极大地提高收集分子信息的能力,这反过来将增强我们理解微小突变和/或环境因素在疾病发生和发展中所产生的复杂影响的能力。亚历克斯技术对基础研究和药物开发应用非常有用,可以补充生物分子及其络合物的结构分析,特别是对于由于过度异质性、有限的稳定性、大尺寸、柔性结构域的存在和/或瞬变性质而难以用传统结构生物学方法处理的物种。例如,拟议的仪器将能够促进对细菌转录过程的详细机制研究,从而能够快速开发下一代抗生素(例如,在转录机制的新位置抑制细菌转录),这对于有效控制全球新出现的多重耐药细菌株至关重要,例如多药耐药结核病(MDR TB)、广泛耐药结核病(XDR TB)、耐甲氧西林金黄色葡萄球菌(MRSA)和万古霉素耐药肠球菌(VRE)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taiho Kim其他文献
Taiho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taiho Kim', 18)}}的其他基金
Autoantibody- and microRNA-based Next-Gen Multiplex Test for Type 1 Diabetes
基于自身抗体和 microRNA 的下一代 1 型糖尿病多重检测
- 批准号:
8981928 - 财政年份:2015
- 资助金额:
$ 19.04万 - 项目类别:
microRNA- and Autoantibody-based Multiplex Assay for Systemic Lupus Erythematosus
基于 microRNA 和自身抗体的系统性红斑狼疮多重检测
- 批准号:
8979824 - 财政年份:2015
- 资助金额:
$ 19.04万 - 项目类别:
Multiplex ALEX-based Test for Protease Activity Profiling in Arthritic Joints
基于多重 ALEX 的关节炎关节蛋白酶活性分析测试
- 批准号:
8525140 - 财政年份:2013
- 资助金额:
$ 19.04万 - 项目类别:
Multiplexed Protein & miRNA Biomarker-based Next-gen Test for Alzheimers Disease
多重蛋白质
- 批准号:
8726276 - 财政年份:2013
- 资助金额:
$ 19.04万 - 项目类别:
Multiplexed Protein & miRNA Biomarker-based Next-gen Test for Alzheimers Disease
多重蛋白质
- 批准号:
8526150 - 财政年份:2013
- 资助金额:
$ 19.04万 - 项目类别:
ALEX for fast ultrasensitive multiplexed detection & quantification of microRNAs
ALEX 用于快速超灵敏多重检测
- 批准号:
8312430 - 财政年份:2012
- 资助金额:
$ 19.04万 - 项目类别:
I-Corps Team Training Program_Nesher Technologies
I-Corps团队培训计划_Nesher Technologies
- 批准号:
8908966 - 财政年份:2012
- 资助金额:
$ 19.04万 - 项目类别:
Fast accurate ultrasensitive in vitro assay to determine BoNT potency & stability
快速准确的超灵敏体外测定法测定 BoNT 效力
- 批准号:
8253009 - 财政年份:2012
- 资助金额:
$ 19.04万 - 项目类别:
ALEX for fast ultrasensitive multiplexed detection & quantification of microRNAs
ALEX 用于快速超灵敏多重检测
- 批准号:
8458519 - 财政年份:2012
- 资助金额:
$ 19.04万 - 项目类别:
Compact ALEX-based Reader for Highly Multiplexed Single Biomolecule Detection
基于 ALEX 的紧凑型阅读器,用于高度多重单一生物分子检测
- 批准号:
8147381 - 财政年份:2009
- 资助金额:
$ 19.04万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 19.04万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 19.04万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 19.04万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 19.04万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 19.04万 - 项目类别:
Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 19.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 19.04万 - 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 19.04万 - 项目类别: