Glycophage arrays for the discovery of biomarkers in disease
用于发现疾病生物标志物的噬菌体阵列
基本信息
- 批准号:7611816
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2010-10-30
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAnalytical ChemistryAntigensAsparagineBacteriaBacteriophagesBiochemistryBiological MarkersBiological ProcessBloodCampylobacter jejuniCarbohydratesCell AdhesionCell LineCell surfaceCellsCellular biologyCharacteristicsComplexCore FacilityCouplingCustomDepositionDetectionDevelopmentDiagnosticDiseaseEngineeringEnsureEnvironmentEpitopesEscherichia coliFluorescent DyesFoundationsFutureGalactosamineGeneticGlassGlycoconjugatesGlycoproteinsGoalsHIVHeart DiseasesHumanImmobilizationLearningLifeLinkLipidsLongevityLungMalignant NeoplasmsMammalsMethodologyMethodsModelingOrganismPathologyPatternPhage DisplayPlayPolysaccharidesProcessProductionProtein GlycosylationProtein-Carbohydrate InteractionProteinsReactionRecombinantsResearchRetroviridae InfectionsRoboticsRoleScanningSensitivity and SpecificitySerumSlideSolidSolutionsSourceSpottingsStaining methodStainsStructureSurfaceSystemTechnologyTherapeuticTherapeutic AgentsUniversitiesVariantWorkanalytical toolbasecDNA Arrayscarbohydrate binding proteincarbohydrate structuredesignglycosylationlarge scale productionlink proteinmethod developmentnovelparticlepathogenpublic health relevanceresearch studysoybean lectinstructural biologysugartool
项目摘要
DESCRIPTION (provided by applicant): Many biological processes throughout the lifespan of a living organism are governed by discrete sugar structures and their interaction with protein and lipid molecules. Such carbohydrates play essential roles in processes such as cell-cell recognition, adhesion, cell activation and host- pathogen interactions. In humans, variations in the synthesis of complex carbohydrates are known to cause pathologies including cancer, retrovirus infection and disorders of the heart, lung and blood. Substantial information has been learned about carbohydrate function from studies employing traditional analytical tools, yet there remains a demand for high-throughput methods that allow for the characterization and engineering of protein-carbohydrate interactions. High-throughput methods for characterizing carbohydrate/antigen interactions have been lacking for a variety of reasons including the absence of template driven synthesis and the significant structural complexity of glycans. However, even the current toolkit for detecting changes in glycan structure has shown great potential in the discovery of novel biomarkers for diseases such as cancer and HIV. Recently, it was discovered that the Campylobacter jejuni asparagine-linked (N-linked) protein glycosylation system can be functionally transferred into E. coli, conferring the ability to glycosylate proteins. Although the bacterial N-glycan is structurally different from its eukaryotic counterparts, such an accomplishment opens the door for engineered glycosylation reactions that mimic the processing of N-glycans in humans and other higher mammals. Glycobia seeks to apply such "bacterial glycoengineering" for the development of diagnostic and therapeutic agents. Towards this goal, the objective of this particular application is to synthesize a functional microarray of phage-displayed glycans (Aim 1) and use the microarray to detect basic protein-carbohydrate interactions (Aim 2). These studies should lay the necessary foundation for future work in expanding the diversity of phage-displayed glycans and analyzing carbohydrate signatures in complex serum. These studies are significant because they should (i) provide an analytical tool that overcomes the current bottlenecks of glycan microarray synthesis and (ii) enable the future synthesis of novel glycoconjugates for research, industrial and therapeutic applications. Public Health Relevance: Abnormalities in the assembly of complex sugars are known to be associated with a multitude of diseases including cancer, retrovirus infection and disorders of the heart, lung and blood. Carbohydrate-based array systems have emerged as the preferred methodology for analyzing carbohydrate-antigen interactions underlying these disorders, however the future utility of these arrays hinges critically on the ability to generate and recover diverse glycans for immobilization. The focus of these studies is the development of functional microarrays comprised of phage- displayed glycans for probing carbohydrate-antigen interactions.
描述(由申请人提供):在活生物体的整个生命周期中,许多生物过程由离散的糖结构及其与蛋白质和脂质分子的相互作用控制。此类碳水化合物在诸如细胞-细胞识别、粘附、细胞活化和宿主-病原体相互作用的过程中发挥重要作用。在人类中,已知复合碳水化合物合成的变化会导致包括癌症、逆转录病毒感染以及心脏、肺和血液疾病在内的病理。从采用传统分析工具的研究中已经了解到有关碳水化合物功能的大量信息,但仍然需要高通量方法,以表征和工程化蛋白质-碳水化合物相互作用。由于各种原因,包括缺乏模板驱动的合成和聚糖的显著结构复杂性,一直缺乏用于表征碳水化合物/抗原相互作用的高通量方法。然而,即使是目前用于检测聚糖结构变化的工具包,在发现癌症和HIV等疾病的新型生物标志物方面也显示出巨大的潜力。近年来,研究发现空肠弯曲菌天冬酰胺连接(N-linked)蛋白糖基化系统可以功能性地转移到大肠杆菌中。大肠杆菌,赋予糖基化蛋白质的能力。尽管细菌N-聚糖在结构上与其真核对应物不同,但这样的成就为模拟人类和其他高等哺乳动物中N-聚糖加工的工程化糖基化反应打开了大门。Glycobia试图将这种“细菌糖工程”应用于诊断和治疗剂的开发。为了实现这一目标,本申请的目的是合成噬菌体展示聚糖的功能性微阵列(Aim 1),并使用该微阵列检测基本蛋白质-碳水化合物相互作用(Aim 2)。这些研究为今后扩大噬菌体展示聚糖的多样性和分析复杂血清中的碳水化合物特征奠定了必要的基础。这些研究是重要的,因为它们应该(i)提供克服聚糖微阵列合成的当前瓶颈的分析工具,和(ii)使得未来能够合成用于研究、工业和治疗应用的新型糖缀合物。公共卫生相关性:已知复合糖组装的异常与多种疾病相关,包括癌症、逆转录病毒感染以及心脏、肺和血液疾病。基于碳水化合物的阵列系统已经成为分析这些疾病背后的碳水化合物-抗原相互作用的优选方法,然而这些阵列的未来效用关键取决于产生和回收用于固定的不同聚糖的能力。这些研究的重点是开发由噬菌体展示的聚糖组成的功能性微阵列,用于探测碳水化合物-抗原相互作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Charles Fisher其他文献
Adam Charles Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Charles Fisher', 18)}}的其他基金
Glycoconjugate therapeutic peptides for improved treatment of human diseases
用于改善人类疾病治疗的糖缀合物治疗肽
- 批准号:
8525563 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Production of recombinant human glucocerebrosidase in Escherichia coli
在大肠杆菌中生产重组人葡萄糖脑苷脂酶
- 批准号:
8058360 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Therapeutic antibody fragments from glycoengineered Escherichia coli
来自糖工程大肠杆菌的治疗性抗体片段
- 批准号:
8081020 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Therapeutic antibody fragments from glycoengineered Escherichia coli
来自糖工程大肠杆菌的治疗性抗体片段
- 批准号:
8002633 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Conjugation of polysialic acid to biologics in glycoengineered Escherichia coli
聚唾液酸与糖工程大肠杆菌中的生物制剂结合
- 批准号:
7911940 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Humanizing N-linked glycosylation in Escherichia coli
大肠杆菌中 N 连接糖基化的人源化
- 批准号:
7746389 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Glycosylation of full-length antibodies in Escherichia coli
大肠杆菌中全长抗体的糖基化
- 批准号:
7670053 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Engineering Escherichia coli for glycosylation of complex human proteins
改造大肠杆菌以糖基化复杂的人类蛋白质
- 批准号:
8332786 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Engineering Escherichia coli for glycosylation of complex human proteins
改造大肠杆菌以糖基化复杂的人类蛋白质
- 批准号:
8203830 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
Aquatic Analytical Chemistry
水生分析化学
- 批准号:
CRC-2018-00279 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Canada Research Chairs
Spatially Resolved Analytical Chemistry: Magnetic Resonance and Magnetic Resonance Imaging of Materials and Processes.
空间分辨分析化学:材料和过程的磁共振和磁共振成像。
- 批准号:
RGPIN-2022-04003 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Analytical Chemistry of Proteins and Peptides
蛋白质和肽的分析化学
- 批准号:
RGPIN-2020-04677 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
- 批准号:
RGPIN-2015-06122 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Aquatic Analytical Chemistry
水生分析化学
- 批准号:
CRC-2018-00279 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Canada Research Chairs
Droplet-Based Analytical Chemistry Platforms Using Superhydrophobic and Superamphiphobic Surfaces
使用超疏水和超双疏表面的基于液滴的分析化学平台
- 批准号:
RGPIN-2016-04790 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Analytical Chemistry of Proteins and Peptides
蛋白质和肽的分析化学
- 批准号:
RGPIN-2020-04677 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual