Conjugation of polysialic acid to biologics in glycoengineered Escherichia coli
聚唾液酸与糖工程大肠杆菌中的生物制剂结合
基本信息
- 批准号:7911940
- 负责人:
- 金额:$ 19.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-10 至 2011-09-09
- 项目状态:已结题
- 来源:
- 关键词:AddressAminationAminesAnabolismAntibodiesAsparagineBacteriaBiological Response Modifier TherapyBloodC-terminalCellsChemicalsClinicalCloningComplexCouplingDrug KineticsDrug Metabolic DetoxicationERBB2 geneEngineeringErythropoietinEscherichia coliExcisionFermentationGenesGeneticGlycoproteinsGranulocyte Colony-Stimulating FactorHalf-LifeHealthcareHeterogeneityHumanHydration statusImmune systemIn VitroInsulinInterferonsKidneyLaboratoriesLeadLifeLinkLipidsLocationMarketingModificationN-Acetylneuraminic AcidNeural Cell Adhesion MoleculesO AntigensPatternPeptidesPharmaceutical PreparationsPlasmidsPolymersPolysaccharidesPolysialic AcidProcessProductionPropertyProteinsRecombinant ProteinsRecombinantsReticuloendothelial SystemSialic AcidsSiteStructureSulfhydryl CompoundsTechnologyTherapeuticTimeTissuesTumor Necrosis Factor-alphaTumor Necrosis FactorsWestern Blottingasparaginasebasecapsulechemical standardclinical efficacycostglycosylationimmunogenicityimprovedin vivonanoparticleperiplasmprematurepublic health relevanceresidencestoichiometrysugartherapeutic proteinuptake
项目摘要
DESCRIPTION (provided by applicant): Biotherapeutics currently constitute a $70 billion market, but their clinical efficacy is often compromised by limitations arising from proteolytic degradation, uptake by cells of the reticuloendothelial system, renal removal, and immunocomplex formation. This can lead to difficulties in reaching and maintaining effective therapeutic concentrations in the blood. The most popular approach to lengthen the active life of a protein therapeutic has been conjugation to polyethyleneglycol (PEGylation). However, PEG is not eliminated via normal detoxification mechanisms in the body and the administration of PEGylated proteins can even generate anti-PEG antibodies. An emerging alternative to PEGylation is polysialylation which involves attachment of polymers of polysialic acid (PSA) to a protein. PSA is being developed for clinical use and polysialylated versions of insulin and erythropoietin have displayed improved tolerance and pharmacokinetics. PSA is synthesized in the body on neural cell adhesion molecule and, unlike PEG, is metabolized as a natural sugar molecule by sialidases. Unfortunately, as with PEGylation, the PSA conjugation process is technically complex and expensive. The multi-step, in vitro process of PSA conjugation is further complicated by the fact that standard chemical conjugation of PSA results in products with random attachment patterns and undesirable heterogeneity. Glycobia specializes in glycoengineering bacteria for use as an expression platform for the stereospecific biosynthesis of therapeutic glycoproteins. The specific hypothesis behind the current proposed studies is that glycoengineered E. coli can be used to produce PSA-conjugated proteins in a single fermentation without the need for in vitro chemical modification. Based on these observations, the objective of this proposal is to generate PSA-conjugated recombinant protein in glycoengineered E. coli by: cloning and expressing the genetic machinery for PSA synthesis in glycoengineered E. coli (Aim1) and conjugating PSA to recombinant human insulin in the periplasm of glycoengineered E. coli (Aim 2). Such an expression platform will represent a stereospecific, directed, rapid, and cost-effective process for the production of PSA-conjugated biotherapeutics that will bring the production process of PSA-conjugated proteins in concert with their tremendous therapeutic potential.
PUBLIC HEALTH RELEVANCE: The efficacy of protein drugs is often compromised by premature elimination from the blood, which results in unacceptably short therapeutic windows and costs that are prohibitive to the healthcare consumer. The chemical attachment of polysialic acid to therapeutic proteins results in improved tolerance and pharmacokinetics, but the process of polysialic acid conjugation is technically challenging and expensive. These proposed studies focus on producing polysialic acid-conjugated proteins in Escherichia coli fermentation without the need for in vitro chemical modification.
描述(由申请人提供):生物治疗药物目前构成了700亿美元的市场,但其临床疗效往往受到蛋白水解降解、网状内皮系统细胞摄取、肾脏清除和免疫复合物形成等限制的影响。这可能导致难以达到和维持血液中的有效治疗浓度。延长蛋白质治疗剂的活性寿命的最流行的方法是与聚乙二醇缀合(PEG化)。然而,PEG不能通过体内正常的解毒机制消除,并且PEG化蛋白质的施用甚至可以产生抗PEG抗体。聚乙二醇化的一种新兴替代方案是聚唾液酸化,其涉及聚唾液酸(PSA)的聚合物与蛋白质的连接。PSA正在被开发用于临床使用,并且胰岛素和促红细胞生成素的多唾液酸化版本已经显示出改善的耐受性和药代动力学。PSA在体内通过神经细胞粘附分子合成,与PEG不同,PSA作为天然糖分子通过唾液酸酶代谢。不幸的是,与PEG化一样,PSA缀合过程在技术上复杂且昂贵。PSA的标准化学缀合导致产物具有随机连接模式和不期望的异质性,这一事实使PSA缀合的多步骤体外过程进一步复杂化。Glycobia专门研究糖工程细菌,用作治疗性糖蛋白立体特异性生物合成的表达平台。目前提出的研究背后的具体假设是糖工程E。大肠杆菌中的蛋白质可以用于在单一发酵中生产PSA缀合的蛋白质,而不需要体外化学修饰。基于这些观察,本建议的目标是在糖工程化的E.在糖工程大肠杆菌中克隆和表达合成PSA的基因。coli(Aim 1),并将PSA与重组人胰岛素在糖工程菌的周质中偶联。coli(Aim 2)。这种表达平台将代表用于生产PSA缀合的生物治疗剂的立体特异性、定向、快速和成本有效的方法,其将使PSA缀合的蛋白质的生产方法与其巨大的治疗潜力相一致。
公共卫生相关性:蛋白质药物的功效通常会因过早从血液中消除而受到损害,这导致不可接受的短治疗窗口和医疗保健消费者望而却步的成本。聚唾液酸与治疗性蛋白质的化学连接导致耐受性和药代动力学的改善,但聚唾液酸缀合的过程在技术上具有挑战性且昂贵。这些拟议的研究集中在大肠杆菌发酵生产聚唾液酸结合蛋白,而不需要在体外化学修饰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Charles Fisher其他文献
Adam Charles Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Charles Fisher', 18)}}的其他基金
Glycoconjugate therapeutic peptides for improved treatment of human diseases
用于改善人类疾病治疗的糖缀合物治疗肽
- 批准号:
8525563 - 财政年份:2013
- 资助金额:
$ 19.9万 - 项目类别:
Production of recombinant human glucocerebrosidase in Escherichia coli
在大肠杆菌中生产重组人葡萄糖脑苷脂酶
- 批准号:
8058360 - 财政年份:2011
- 资助金额:
$ 19.9万 - 项目类别:
Therapeutic antibody fragments from glycoengineered Escherichia coli
来自糖工程大肠杆菌的治疗性抗体片段
- 批准号:
8081020 - 财政年份:2010
- 资助金额:
$ 19.9万 - 项目类别:
Therapeutic antibody fragments from glycoengineered Escherichia coli
来自糖工程大肠杆菌的治疗性抗体片段
- 批准号:
8002633 - 财政年份:2010
- 资助金额:
$ 19.9万 - 项目类别:
Glycophage arrays for the discovery of biomarkers in disease
用于发现疾病生物标志物的噬菌体阵列
- 批准号:
7611816 - 财政年份:2009
- 资助金额:
$ 19.9万 - 项目类别:
Humanizing N-linked glycosylation in Escherichia coli
大肠杆菌中 N 连接糖基化的人源化
- 批准号:
7746389 - 财政年份:2009
- 资助金额:
$ 19.9万 - 项目类别:
Glycosylation of full-length antibodies in Escherichia coli
大肠杆菌中全长抗体的糖基化
- 批准号:
7670053 - 财政年份:2009
- 资助金额:
$ 19.9万 - 项目类别:
Engineering Escherichia coli for glycosylation of complex human proteins
改造大肠杆菌以糖基化复杂的人类蛋白质
- 批准号:
8332786 - 财政年份:2009
- 资助金额:
$ 19.9万 - 项目类别:
Engineering Escherichia coli for glycosylation of complex human proteins
改造大肠杆菌以糖基化复杂的人类蛋白质
- 批准号:
8203830 - 财政年份:2009
- 资助金额:
$ 19.9万 - 项目类别:
相似海外基金
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
- 批准号:
2870985 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
Development of Intermolecular Amination Utilizing Iminyl Radical Species
利用亚氨基自由基进行分子间胺化的进展
- 批准号:
22KJ2056 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Cu-catalysed Amination of Alkylboron Reagents
铜催化烷基硼胺化试剂
- 批准号:
2902162 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
Nucleophilic amination with an azanide surrogate
与氮氧化物替代物的亲核胺化
- 批准号:
2905473 - 财政年份:2023
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
A Radical Amination Approach to Aliphatic Amines
脂肪胺的自由基胺化方法
- 批准号:
EP/V050176/1 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Research Grant
Ruthenium-catalyzed Late Stage Amination of arenes
钌催化芳烃的后期胺化
- 批准号:
2752687 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 19.9万 - 项目类别:
Standard Grant
Accessing 3-Alkyl 3-Amino Oxetanes by Carbonyl Alkylative Amination
通过羰基烷基化胺化获得 3-烷基 3-氨基氧杂环丁烷
- 批准号:
2638334 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
Enzyme carbomimetics: Single site sustainable catalysts for alcohols amination
酶碳模拟物:用于醇胺化的单中心可持续催化剂
- 批准号:
2606065 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Studentship
Intramolecular Guanine C8-Amination for the Synthesis of Guanosine Cyclonucleosides
分子内鸟嘌呤 C8-氨基化用于鸟苷环核苷的合成
- 批准号:
2638422 - 财政年份:2021
- 资助金额:
$ 19.9万 - 项目类别:
Studentship