Structural Dynamics of Biomolecular Systems
生物分子系统的结构动力学
基本信息
- 批准号:7751334
- 负责人:
- 金额:$ 32.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdministratorAlgorithmsAllosteric RegulationAreaAutomobile DrivingBenchmarkingBioinformaticsBiologicalBiological ProcessBiologyBiomedical ComputingBiomedical EngineeringBiomedical ResearchCardiovascular systemCell physiologyCellsCerealsChemicalsCodeCollaborationsCommunicationCommunitiesComplementComplexComputational BiologyComputer SimulationComputer softwareComputing MethodologiesDataData AnalysesDatabasesDegradation PathwayDevelopmentDiseaseDoctor of PhilosophyDocumentationDrug Delivery SystemsElementsEngineeringEnvironmentEquationExhibitsFacultyFamily memberFosteringFundingFutureGenerationsGenetic MedicineGoalsGrantGraphHybridsImageryIndividualInformation SciencesInstitutesInstitutionInternetInvestigationKnowledgeLeadLengthLibrariesLicensingLinkLiteratureMachine LearningMapsMechanicsMediatingMedical DeviceMedical ResearchMethodologyMethodsMissionModelingModificationMolecularMolecular ChaperonesMolecular ConformationMolecular MachinesMolecular StructureMotionMotorMovementMyopathyMyosin ATPaseNatureNewsletterNonlinear DynamicsOperative Surgical ProceduresOrganismOutcomePaperPathway interactionsPatternPharmaceutical PreparationsPhysicsPhysiologicalPlayPolymersProcessPropertyProtein DynamicsProteinsPublishingRNARNA FoldingResearchResearch InfrastructureResearch PersonnelResearch Project GrantsResolutionRoleSchemeScientistSequence AnalysisShapesSignal PathwaySignal TransductionSignal Transduction PathwaySimulateSiteSoftware EngineeringSourceStatistical MechanicsStructureStudentsSystemTechniquesTechnologyTestingTimeTissuesTrainingTranslatingUnited States National Institutes of HealthUniversitiesUrsidae FamilyValidationWorkadvanced simulationanalytical toolbasebiological systemsbiomedical scientistbody systemchaperone machinerychaperonincommercializationcomputer frameworkcomputer sciencecomputerized toolsdata modelingdata sharingdesigndissemination researchflexibilitygraphical user interfaceimage visualizationimprovedinnovationinsightinterestintermolecular interactionmacromoleculemathematical modelmeetingsmembermodels and simulationmolecular dynamicsnanometernetwork modelsneuromuscularnovelopen sourceprogramsprotein foldingprotein functionprototyperepositoryresearch studyresponsesimulationsoftware developmentstructural genomicstheoriestooluser-friendlyweb site
项目摘要
Many proteins function as molecular machines. Understanding the principles that control the machinery of biomolecular systems is a computational challenge in many cases due to the involvement of macromolecular structures composed of multiple subunits and cooperative interactions manifested by allosteric changes in conformations, which are beyond the range of atomic simulations. Our goal in a recently funded R33 has been to develop and utilize low resolution models for exploring the collective dynamics of such complex systems, and bridging between structure and function, based on the paradigm structure-encodes-dynamics-encodes-function. The elastic network models and methods we introduced to this aim have found utility in many applications and helped us gain insights into the intrinsic, structure- encoded ability of proteins to favor the reconfiguration of native structures between functional substates. In the present R01, we are proposing to build on our previous work, to further explore the structure -> dynamics -> function mapping of allosteric and/or multimeric proteins using physically-based and computationally efficient models in collaboration with the NCBC Simbios at Stanford U (PI: Altman). The Simbios group has already started to construct a new simulation package, Simbody, the utility of which is expected to be significantly enhanced by a collaborative work. Our specific aims are (1) to build models and methods for automated coarse-graining of complex structures at multiple levels of resolution and assessing their collective dynamics, toward using the resulting models (structure) and data (motions) in Simbody; (2) to complement the physics-based approach developed in Aim 1 by information-theoretic approaches toward delineating signal transduction pathways/mechanisms in allosteric systems, and establishing the connection between these pathways and structural dynamics, and (3) to gain insights into the machinery of molecular chaperones, using as prototypes the bacterial chaperonin GroEL-GroES and the DnaK chaperone system, in collaboration with the Gierasch lab currently doing NIH-supported experiments for understanding the allosteric dynamics of the DnaK system. An important outcome of this project will be the establishment of a methodology for simulating the machinery of biomolecular systems on the order of Megadaltons, which will be achieved in collaboration with the Schulten lab, in addition to our partnership with the Simbios team.
许多蛋白质的功能是分子机器。理解控制生物分子系统的机制的原理在许多情况下是一个计算挑战,因为涉及由多个亚基组成的大分子结构和构象变构变化所表现出的合作相互作用,这超出了原子模拟的范围。我们在最近资助的R33中的目标是开发和利用低分辨率模型来探索此类复杂系统的集体动态,并基于结构-编码-动态-编码-功能范式在结构和功能之间架起桥梁。我们为此目的引入的弹性网络模型和方法在许多应用中已经发现了实用性,并帮助我们深入了解蛋白质的内在结构编码能力,以促进功能子状态之间的天然结构的重新配置。在目前的R 01中,我们建议在我们以前的工作基础上,与斯坦福大学U的NCBC Simbios合作,使用基于物理和计算效率的模型进一步探索变构和/或多聚体蛋白质的结构->动力学->功能映射(PI:Altman)。Simbios小组已经开始构建一个新的模拟包Simbody,预计通过合作将大大提高其效用。我们的具体目标是(1)建立模型和方法,用于在多个分辨率水平上自动粗粒化复杂结构,并评估其集体动态,以使用所产生的模型Simbody中的(结构)和数据(运动);(2)通过信息理论方法来补充目标1中开发的基于物理学的方法,以描绘变构系统中的信号转导途径/机制,并建立这些途径与结构动力学之间的联系,以及(3)与Gierasch实验室合作,使用细菌伴侣蛋白GroEL-GroES和DnaK伴侣系统作为原型,深入了解分子伴侣的机制,目前正在进行NIH支持的实验以了解DnaK系统的变构动力学。该项目的一个重要成果将是建立一种方法,用于模拟兆道尔顿量级的生物分子系统的机械,这将与Schulten实验室合作实现,此外我们还与Simbios团队合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivet Bahar其他文献
Ivet Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivet Bahar', 18)}}的其他基金
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10462594 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10231654 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10887238 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10612069 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Structure and function of PTH class B GPCR
PTH B 类 GPCR 的结构和功能
- 批准号:
10657916 - 财政年份:2018
- 资助金额:
$ 32.48万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8743368 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8896676 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
8935874 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
9404096 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.48万 - 项目类别:
Research Grant














{{item.name}}会员




