Confocal Laser Scanning Biological Microscope Olympus Fv1000
共焦激光扫描生物显微镜 Olympus Fv1000
基本信息
- 批准号:7595715
- 负责人:
- 金额:$ 45.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsArtsAtherosclerosisBiologicalBiomedical EngineeringCardiovascular systemCartilageCellsClinicalData SetDegenerative polyarthritisDiagnosisDiagnosticDiseaseEquipmentFacultyFluorescence Resonance Energy TransferFoundationsGoalsGrantHealthHeart DiseasesHypertensionImageInvestigationKnowledgeLaser Scanning Confocal MicroscopyLasersLifeMalignant NeoplasmsMicrocirculationMicroscopeMicroscopicMolecularOrganismPathogenesisPreventionProteinsRegenerative MedicineResearchResearch PersonnelResearch Project GrantsResolutionScanningSignal TransductionSignaling MoleculeStem cellsStructureSystemTechnologyTherapeuticTimeTissue EngineeringTissuesWorkbody systemdesignfluorophorefrontierinnovationinstrumentinstrumentationmeetingsmembernervous system disorderneuron developmentnovelnovel strategiesprogramspublic health relevanceresearch studystem cell biologytooltrafficking
项目摘要
DESCRIPTION (provided by applicant): Recent advances in microscopic technologies provide powerful tools to visualize and quantify the molecular and cellular dynamics in living cells. Such novel microscopic tools are necessary for researchers to pursue their innovative projects at the frontier of bioengineering. In this proposal of Shared Instrumentation Grant, ten UCSD Bioengineering faculty members collectively request the purchase of an Olympus FV1000 Confocal Laser Scanning Biological Microscope System for the shared usage in their 15 projects in order to effectively carry out their research with state-of-the-art equipment to meet the research objectives in these grants. The research of the 15 projects is directed at four important fields: (a) Molecular and Cellular Signaling, (b) Stem Cells Bioengineering, (c) Tissue Engineering and Remodeling, and (d) Systems Bioengineering. These research projects are under the overarching theme of Integrative Bioengineering. Thus, our common scientific goal is integrative bioengineering, and the common technological need is the laser scanning confocal microscopy system. The current confocal microscope in UCSD Bioengineering was purchased 14 years ago; it is not only non-functional, but also lacks the features of the new system that are needed by the Project PIs to address the critical questions in their research programs and to initiate innovative investigations. In the Proposed Olympus FV1000 system, the long-time-lapse function of imaging multiple live cells will minimize laser damage for longer duration experiments and the multiple laser excitation wavelengths enable the acquisition of large data sets of multiple fluorophores. The 3D structural resolutions and temporal dynamics allow for high- quality imaging, including studies of the structures of matrices, cells, and tissues, as well as intracellular localization of marker molecules and trafficking. The FRET, FRAP, FLIM and TIRFM functions of the FV1000 are critical for dynamic studies of signaling molecules and adhesion proteins/matrix interactions. The research to be carried out with the use of this new share instrumentation will not only enhance our knowledge on the bioengineering foundation of structure and function of living systems in health, but also generate new approaches for the diagnosis, treatment and prevention of many health problems, such as cardiac diseases, hypertension, atherosclerosis, osteoarthritis, neurological diseases, and cancer. PUBLIC HEALTH RELEVANCE: The proposed instrument will be used to study the molecular and cellular dynamics in several body systems with an integrative approach. The work will address frontier problems in bioengineering research, including regenerative medicine, stem cell biology, cardiovascular dynamics, microcirculation, cartilage graft designs and neuronal development. The information generated from the research made possible by this instrument system will yield new knowledge on the pathogenesis of diseases and help to develop therapeutic and diagnostic tools for many important clinical conditions.
描述(由申请人提供):显微技术的最新进展为可视化和量化活细胞中的分子和细胞动力学提供了强大的工具。这些新颖的微观工具对于研究人员在生物工程前沿继续他们的创新项目是必要的。在这份共享仪器助学金提案中,10名UCSD生物工程教员集体申请购买奥林巴斯FV1000共焦激光扫描生物显微镜系统,供他们的15个项目共享使用,以便有效地利用最先进的设备进行研究,以满足这些助学金中的研究目标。这15个项目的研究涉及四个重要领域:(A)分子和细胞信号,(B)干细胞生物工程,(C)组织工程和重塑,以及(D)系统生物工程。这些研究项目是在综合生物工程的总体主题下进行的。因此,我们共同的科学目标是一体化生物工程,共同的技术需求是激光扫描共聚焦显微镜系统。加州大学圣迭戈分校生物工程中目前的共焦显微镜是14年前购买的;它不仅没有功能,而且缺乏项目绩效指标所需的新系统的功能,以解决其研究计划中的关键问题和启动创新研究。在拟议的奥林巴斯FV1000系统中,多个活细胞成像的长时间延迟功能将使较长持续时间的实验中的激光损伤降至最低,并且多个激光激发波长使得能够获取多个荧光团的大数据集。3D结构分辨率和时间动力学允许高质量的成像,包括研究基质、细胞和组织的结构,以及标记分子的细胞内定位和运输。FV1000的FRET、FRAP、FLIM和TIRFM功能对于信号分子和黏附蛋白/基质相互作用的动态研究至关重要。使用这种新的SHARE仪器进行的研究不仅将增强我们对健康生命系统结构和功能的生物工程基础的了解,而且还将为诊断、治疗和预防许多健康问题提供新的方法,如心脏病、高血压、动脉粥样硬化、骨关节炎、神经疾病和癌症。公共卫生相关性:拟议的仪器将用于研究几个身体系统中的分子和细胞动力学,并采用综合方法。这项工作将解决生物工程研究中的前沿问题,包括再生医学、干细胞生物学、心血管动力学、微循环、软骨移植设计和神经元发展。由该仪器系统产生的研究产生的信息将产生关于疾病发病机制的新知识,并有助于开发针对许多重要临床情况的治疗和诊断工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 45.95万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 45.95万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 45.95万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 45.95万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 45.95万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 45.95万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 45.95万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 45.95万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 45.95万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
10448495 - 财政年份:2012
- 资助金额:
$ 45.95万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 45.95万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 45.95万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 45.95万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 45.95万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 45.95万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 45.95万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 45.95万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 45.95万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 45.95万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 45.95万 - 项目类别:














{{item.name}}会员




