Optimizing a Pipelined HPCC Processing Environment for Computational Neuroscience
优化计算神经科学的流水线 HPCC 处理环境
基本信息
- 批准号:7595539
- 负责人:
- 金额:$ 36.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-15 至 2010-12-14
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAdoptionAlzheimer&aposs DiseaseAnalysis of VarianceBrainCaliforniaCollaborationsComplexComputational algorithmComputersDataDedicationsDevelopmentDimensionsDiseaseEnvironmentEquipmentFosteringFour-dimensionalFundingFutureGenerationsHealthHigh Performance ComputingHumanImageImageryImaging technologyInstitutionInternationalInvestigationLaboratoriesLos AngelesMethodsNeurosciences ResearchParticipantPerformancePersonnel ManagementPopulationPopulation StudyProceduresProcessProductivityResearch InfrastructureResearch MethodologyResearch PersonnelSchizophreniaScientistSiteSourceSurfaceSystemTechniquesTechnologyTimeUniversitiescomputational neurosciencecomputer codecomputerized data processingcomputing resourcesinnovationinstrumentinstrumentationinterestnovelpublic health relevanceresponse
项目摘要
DESCRIPTION (provided by applicant): Innovations in imaging technologies and in the field of computational neuroscience have resulted in the generation of massive amounts of image and statistical data concerning the human brain. These advances have resulted in the need for high performance computing and novel investigative paradigms for the meaningful analysis of the available data. The Laboratory of Neuro Imaging has been a frontrunner in the adoption of cutting-edge technology to understand dynamic changes such as the development and degeneration of the human brain in health and disease. Our group has gained worldwide recognition for the development of innovative research methodologies, computational algorithms and high-order mathematical approaches to the investigation of brain registration, the analysis of variance between and within populations, and the visualization of these data. These techniques, however, now must not only accommodate four dimensions, as ongoing projects at LONI and elsewhere generate time-varying, multidimensional statistical fields but also be able to reasonably process data that are increasingly more complex. We now routinely apply these computationally demanding methods to population studies in order to achieve sensitivity to potentially subtle differences. In response to these computational challenges, a group of neuro-, biomedical and computer scientists with common interests and computational needs have come together to seek funding to modernize the network infrastructure of a shared, dedicated high performance computing cluster. The increasing computational demands placed on this system by four-dimensional volume computation, intricate surface extraction, nonlinear warping and the multi-modal integration of complex isosurfaces with data from disparate sources have clearly identified key network bottlenecks that significantly degrade the processing performance of complex analyses. The requested network upgrade would eliminate congestion and bandwidth contention and allow for the optimal utilization of the computational resource by LONI investigators and collaborators. An administrative plan is already in place by which the equipment can be managed equitably. Technical and management personnel also are part of the funded group of participants. Ongoing collaborations and the common programmatical requirements will enable sharing of computer code, analytic procedures, computational strategies and infrastructural capabilities. The provision of the requested instrument will enhance the productivity of ongoing computational neuroscience research at LONI and collaborating sites in schizophrenia, HIV/AIDS and Alzheimer's disease, among others, and foster the development of leading edge technology and applications for all participants. PUBLIC HEALTH RELEVANCE: The Laboratory of Neuro Imaging (LONI) at the University of California, Los Angeles (UCLA) seeks funding to augment the network infrastructure of a high performance computational cluster utilized by an extensive and distinguished group of local, national and international neuroscientists with a common dedication to the study of the complex, dynamic brain in health and disease. The requested instrumentation package will alleviate significant network congestion and bandwidth contention detrimental to current and future investigations requiring the utilization of this shared computational resource. If funded, ongoing neuroscience research at LONI and a compelling number of collaborative efforts involving outside institutions stand to directly benefit.
描述(由申请人提供):成像技术和计算神经科学领域的创新导致了大量关于人类大脑的图像和统计数据的产生。这些进步导致了对高性能计算和新颖调查范式的需求,以便对可用数据进行有意义的分析。神经成像实验室一直在采用尖端技术来了解人类大脑在健康和疾病中的发育和退化等动态变化方面处于领先地位。我们的团队已经获得了世界范围内的认可,因为他们开发了创新的研究方法,计算算法和高阶数学方法来研究大脑注册,分析人群之间和内部的方差,以及这些数据的可视化。然而,这些技术现在不仅必须适应四个维度,因为LONI和其他地方正在进行的项目产生时变的多维统计领域,而且还必须能够合理地处理日益复杂的数据。我们现在经常将这些计算要求很高的方法应用于人口研究,以达到对潜在细微差异的敏感性。为了应对这些计算挑战,一群具有共同兴趣和计算需求的神经、生物医学和计算机科学家聚集在一起寻求资金,以实现共享、专用高性能计算集群的网络基础设施现代化。四维体积计算、复杂曲面提取、非线性翘曲以及复杂等面层与不同来源数据的多模态集成对该系统的计算需求不断增加,这清楚地确定了显著降低复杂分析处理性能的关键网络瓶颈。所要求的网络升级将消除拥塞和带宽争用,并允许LONI调查人员和合作者对计算资源进行最佳利用。一项行政计划已经到位,可以公平地管理这些设备。技术和管理人员也是受资助的参与者群体的一部分。正在进行的合作和共同的编程需求将使计算机代码、分析过程、计算策略和基础设施能力的共享成为可能。提供所要求的仪器将提高LONI和精神分裂症、艾滋病毒/艾滋病和阿尔茨海默病等合作站点正在进行的计算神经科学研究的生产力,并促进为所有参与者开发前沿技术和应用。公共卫生相关性:加州大学洛杉矶分校(UCLA)的神经成像实验室(LONI)寻求资金,以增强高性能计算集群的网络基础设施,该网络基础设施被广泛和杰出的地方,国家和国际神经科学家团队使用,共同致力于研究健康和疾病中复杂,动态的大脑。所要求的仪器包将减轻严重的网络拥塞和带宽争用,这对当前和未来需要利用这种共享计算资源的调查是有害的。如果得到资助,LONI正在进行的神经科学研究以及涉及外部机构的大量合作努力将直接受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHUR W TOGA其他文献
ARTHUR W TOGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHUR W TOGA', 18)}}的其他基金
High Capacity, High Performance Storage System for Neuroscience
适用于神经科学的大容量、高性能存储系统
- 批准号:
10425960 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
HABS-HD - Core B - Neuroimaging & Informatics Core
HABS-HD - 核心 B - 神经影像
- 批准号:
10493846 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
Training in the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer’s Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
- 批准号:
10628648 - 财政年份:2018
- 资助金额:
$ 36.13万 - 项目类别:
Training for the Multiscale and Multimodal Analysis of Biomarkers in Alzheimer's Disease
阿尔茨海默病生物标志物的多尺度和多模式分析培训
- 批准号:
10162462 - 财政年份:2018
- 资助金额:
$ 36.13万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant