Study of fiber anatomy in mouse brain development via MRI/DTI

通过 MRI/DTI 研究小鼠大脑发育中的纤维解剖结构

基本信息

  • 批准号:
    7791108
  • 负责人:
  • 金额:
    $ 53.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-15 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The main goal of this research program is to characterize the development of the mouse brain, with emphasis on white matter anatomy, using magnetic resonance micro-imaging in conjunction with mathematical methodologies for quantitative image and shape analysis following the field of computational neuroanatomy. The development of methods for altering the genotype of model animals, including mice, has opened enormous possibilities for better understanding the role of different genes in brain development and diseases, by studying differences in the course of brain development between normal and transgenic animals. Imaging, and in particular MRI, is bound to play an important role in structural phenotyping of mouse models, since it can serve as an effective screening tool pointing to more detailed yet laborious histological analyses, and does not suffer from sectioning and staining distortion artifacts, but provides spatially consistent 3D volumes. However, conventional imaging techniques cannot reveal the internal white matter architecture, which consists of various fiber tracts and is of great interest in understanding brain development. This is especially the case for fetal and young mouse brains, in which myelination is not well developed and the T1- or T2-weighted images cannot even distinguish the gray and white matter with adequate contrast. Diffusion tensor imaging (DTI) provides excellent contrast, and is able to distinguish various structures in the white matter of even young brains, by imaging microscopic water diffusion which is known to be relatively higher along axonal fibers. Therefore, DTI is bound to be critical in studying brain development and brain connectivity, as well in understanding how genetic mutations affect the formation, myelination, or degeneration of axonal fibers. Concurrent with advances in micro-MR imaging have been advances in mathematical methodologies for computational anatomy, a rapidly maturing field of quantitative techniques for analysis of brain morphology from volumetric images. These new approaches are now adopted by a number of neuroimaging and neuroinformatics groups, and they constitute powerful tools for structural phenotyping in highly automated and detailed ways; they are particularly sensitive to subtle and spatially complex patterns of morphological change. In this project, we will continue to develop methods for quantitative analysis of the mouse brain, and use them to generate normative data for brain development of the C57BL/6J mouse strain, and to investigate phenotypic differences between wildtype and transgenic mouse models. Emphasis will continue to be the mathematical and computational challenges posed by the complexity of tensor images, which are obtained in DTI (Aims 1 and 2), especially challenges in image registration and morphological analysis that are posed by the rapid changes observed during early postnatal development as well as by morphological differences between transgenic and wildtype mice. Moreover, we will test the utility of our methodologies in studies of 3 specific projects involving mouse models of schizophrenia, autism, and Rett's syndrome (Aim 3), in collaborative efforts. PUBLIC HEALTH RELEVANCE: This project seeks to investigate normal mouse brain development via high-resolution diffusion tensor imaging, an MRI contrast that provides good definition of brain tissues and of fiber architecture. Advanced computational image analysis tools for diffusion tensor images will be further developed and validated, emphasizing two of the challenges faced by this project: 1) rapid anatomical changes during early postnatal development; 2) morphological differences between wildtype and transgenic mice. These neuroinformatics tools will be applied to 3 collaborative projects, seeking to identify brain differences between wildtype mice and mouse models of schizophrenia, autism, and Rett's syndrome.
描述(由申请人提供):本研究计划的主要目标是描述小鼠大脑发育的特征,重点是白色物质解剖,使用磁共振显微成像结合计算神经解剖学领域的定量图像和形状分析的数学方法。 改变包括小鼠在内的模型动物基因型的方法的发展,通过研究正常动物和转基因动物之间大脑发育过程的差异,为更好地理解不同基因在大脑发育和疾病中的作用开辟了巨大的可能性。 成像,特别是MRI,必然在小鼠模型的结构表型中发挥重要作用,因为它可以作为一种有效的筛选工具,指向更详细但费力的组织学分析,并且不会遭受切片和染色失真伪影,但提供空间一致的3D体积。 然而,传统的成像技术不能揭示内部的白色物质结构,它由各种纤维束组成,对理解大脑发育具有极大的兴趣。 对于胎儿和幼年小鼠的大脑尤其如此,在这些大脑中,髓鞘形成并不发育良好,T1或T2加权图像甚至不能以足够的对比度区分灰色和白色物质。 扩散张量成像(DTI)提供了极好的对比度,并且能够通过对已知沿沿着轴突纤维相对较高的微观水扩散成像来区分甚至年轻脑的白色物质中的各种结构。 因此,DTI在研究大脑发育和大脑连接以及了解基因突变如何影响轴突纤维的形成、髓鞘形成或变性方面至关重要。 与微磁共振成像的进展同时,计算解剖学的数学方法也取得了进展,这是一个快速成熟的定量技术领域,用于从体积图像分析大脑形态。 这些新方法现在被许多神经影像学和神经信息学小组采用,它们以高度自动化和详细的方式构成了结构表型分析的强大工具;它们对形态变化的微妙和空间复杂模式特别敏感。 在本项目中,我们将继续开发小鼠脑的定量分析方法,并使用它们来生成C57 BL/6 J小鼠品系脑发育的标准数据,并研究野生型和转基因小鼠模型之间的表型差异。 重点将继续是张量图像的复杂性所带来的数学和计算挑战,这些张量图像是在DTI中获得的(目标1和2),特别是在出生后早期发育期间观察到的快速变化以及转基因小鼠和野生型小鼠之间的形态差异所带来的图像配准和形态分析方面的挑战。 此外,我们将测试我们的方法在3个具体项目的研究中的效用,涉及精神分裂症,自闭症和Rett综合征(Aim 3)的小鼠模型,在合作的努力。 公共卫生相关性:该项目旨在通过高分辨率扩散张量成像研究正常小鼠大脑发育,这是一种MRI对比,可提供脑组织和纤维结构的良好定义。 将进一步开发和验证用于扩散张量图像的高级计算图像分析工具,强调该项目面临的两个挑战:1)出生后早期发育期间的快速解剖变化; 2)野生型和转基因小鼠之间的形态差异。 这些神经信息学工具将应用于3个合作项目,旨在确定野生型小鼠与精神分裂症,自闭症和Rett综合征小鼠模型之间的大脑差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 53.99万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 53.99万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10839623
  • 财政年份:
    2017
  • 资助金额:
    $ 53.99万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了