Cortical Control of an Assistive Robotic Arm
辅助机械臂的皮质控制
基本信息
- 批准号:7942066
- 负责人:
- 金额:$ 45.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmendmentAmyotrophic Lateral SclerosisAreaArtsBehaviorBehavioralBiologicalBrainClinical ResearchClinical TrialsCollaborationsCommunicationComputersDevelopmentDevicesDimensionsEngineeringEventFaceFreedomGerman populationGoalsGrantHandHumanHuman ResourcesImplantIntentionJointsLeadLearningLegLifeLimb structureLinkMethodsMicroelectrodesMonitorMotorMotor CortexMovementMusNervous System PhysiologyNeuronsParalysedParticipantPerformancePersonsPhasePopulationPreventionProsthesisQuadriplegiaQuality of lifeRehabilitation OutcomeRehabilitation therapyResearchResearch Ethics CommitteesRobotRoboticsRunningSelf-Help DevicesSignal TransductionSourceSpinal cord injuryStrokeSystemTechnologyTestingTimeTrainingUpper ExtremityVariantWaterWorkarmbasecostdesigndisabilitydrinkingdrinking waterexperienceflexibilitygraspimprovedneuroregulationneurotechnologyoperationpilot trialrelating to nervous systemresearch studysensorsimulationvirtual reality
项目摘要
DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (01) Behavior, Behavioral Change, and Prevention and specific Challenge Topics: Enabling Technologies 06-HD-101* Improved interfaces for prostheses to improve rehabilitation outcomes; 06-NS-107 Sensors to monitor neurologic function and 06-NS-104 Developing and validating assistive neurotechnologies. The overall goal of this RC1 is to demonstrate the ability for humans with tetraplegia to drink a cup of water using a neurally controlled robot arm. The aims directly related to three challenge areas related to rehabilitation, sensor development, and enabling those with disabilities: 06-HD101, NS 104 and 107. This project capitalizes on an exceptional opportunity for persons with tetraplegia involved in pilot clinical trial of a neural interface system, 'BrainGate', to participate in research to develop new means to restore independence and control. Specifically, the research will establish the ability for BrainGate trial participants to use neural signals from their motor cortex to perform useful reach and grasp actions with a robotic arm. This enabling neurotechnology research is made possible by state of the art robots, designed and tested for safe human interactions, capable of human-like reach and grasp movements. The robots will be provided by the robotics group of the German Aerospace Agency DLR, who have developed and tested this robot. This unique opportunity is also made possible by an experienced clinical, research and engineering academic team who are running a new IDE BrainGate2 clinical trial. The work will extend already demonstrated abilities for persons with longstanding severe paralysis to perform 'point and click' computer mouse actions and control simple robots using BrainGate as part of an earlier FDA and IRB approved IDE pilot trial. The first aim is to determine the number of dimensions that can be independently controlled by neural signals and the means to learn to control these dimensions, using simulations of robot arm function and with the physical robot at a distance. The research will establish optimal decoding and training methods for humans to achieve the highest degree of freedom control. The second aim will advance algorithms to improve reliability and stability of performance over time. The third aim is to create the communication link to the LWRIII robot arm. For the fourth aim, physical system use will be evaluated using optimal training and decoding approaches. The ability for a person with tetraplegia to reach out and grasp a cup of water and drink, using the robot under neural control will be demonstrated. This research will advance assistive technologies that would permit substantially greater independence and control for persons with severe movement disabilities. This Challenge Grant aims to develop assistive technology that will allow persons with severe paralysis to be able to reach and grasp objects using their own brain signals. The experiments will test the ability for persons unable to move their arms or legs, resulting from spinal cord injury, stroke, or Lou Gehrig's disease, to control a robotic arm and hand that can safely interact with people. We will demonstrate the ability for a person with paralysis who is part of an ongoing pilot human clinical trial on neural interfaces to pick up and drink a cup of water using only their own brain signals. This technology could lead to a set of new devices that markedly enhance quality of life and independence of people with severe disabilities.
描述(由申请人提供):本申请涉及广泛的挑战领域(01)行为、行为改变和预防以及特定的挑战主题:使能技术06-HD-101* 改进假肢接口以改善康复效果; 06-NS-107监测神经功能的传感器和06-NS-104开发和验证辅助神经技术。该RC 1的总体目标是证明四肢瘫痪的人使用神经控制的机器人手臂喝一杯水的能力。目标直接涉及与康复,传感器开发和使残疾人能够实现的三个挑战领域:06-HD 101,NS 104和107。该项目利用了一个特殊的机会,让参与神经接口系统“BrainGate”试点临床试验的四肢瘫痪患者参与研究,以开发恢复独立性和控制力的新方法。具体而言,该研究将建立BrainGate试验参与者使用来自运动皮层的神经信号的能力,以使用机器人手臂执行有用的伸手和抓握动作。这使得神经技术研究成为可能,这是由最先进的机器人,设计和测试安全的人类互动,能够像人类一样伸手和抓握动作。这些机器人将由德国航空航天局DLR的机器人小组提供,他们开发并测试了这款机器人。这个独特的机会也是由一个经验丰富的临床,研究和工程学术团队谁正在运行一个新的IDE BrainGate 2临床试验。这项工作将扩展已经证明的能力,使长期严重瘫痪的人能够使用BrainGate执行“点击”计算机鼠标动作和控制简单的机器人,这是FDA和IRB批准的IDE试点试验的一部分。第一个目标是确定可以由神经信号独立控制的维度的数量以及学习控制这些维度的方法,使用机器人手臂功能的模拟并与物理机器人保持一定距离。该研究将为人类建立最佳解码和训练方法,以实现最高自由度的控制。第二个目标是改进算法,以提高性能的可靠性和稳定性。第三个目标是建立与LWRIII机器人手臂的通信链路。第四个目标是使用最佳训练和解码方法评估物理系统的使用情况。一个四肢瘫痪的人伸手抓住一杯水和饮料的能力,使用神经控制下的机器人将被证明。这项研究将推动辅助技术的发展,使行动严重残疾者能够获得更大的独立性和控制能力。这项挑战赠款旨在开发辅助技术,使严重瘫痪的人能够使用自己的大脑信号达到和抓住物体。这些实验将测试因脊髓损伤、中风或卢伽雷病而无法移动手臂或腿的人控制机器人手臂和手的能力,这些手臂和手可以安全地与人互动。我们将展示一个瘫痪的人的能力,他是一个正在进行的关于神经接口的试点人类临床试验的一部分,只用他们自己的大脑信号拿起并喝下一杯水。这项技术可能会导致一套新的设备,显着提高生活质量和严重残疾人的独立性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P DONOGHUE其他文献
JOHN P DONOGHUE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN P DONOGHUE', 18)}}的其他基金
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7849598 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7428870 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
8116598 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7640588 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7236484 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
THE DYNAMIC BRAIN: MOLECULES MATHEMATICS AND THE MIND
动态大脑:分子数学和思维
- 批准号:
6189121 - 财政年份:2000
- 资助金额:
$ 45.18万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.18万 - 项目类别:
Research Grant