Optimization of the Chemical-Physical Environments for Stem Cell Differentiation
干细胞分化的化学物理环境的优化
基本信息
- 批准号:7976461
- 负责人:
- 金额:$ 18.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentBlood CellsBlood VesselsCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCell CountCell Culture TechniquesCell Differentiation processCell TherapyCellsChemicalsClinicalCollaborationsCommitCuesDevelopmentDevicesDifferentiation and GrowthElementsEnvironmentExtracellular MatrixExtracellular Matrix ProteinsFibroblast Growth FactorFoundationsGoalsGrowth FactorHealthcareHeartHeart failureHematological DiseaseHydrogelsIn VitroInvestigationKnowledgeLaboratoriesLifeLungMechanicsMethodsMorphogenesisMuscle RigidityPatientsPhysical environmentPlayProcessProductionPropertyProtein ArrayProtein MicrochipsProteinsProtocols documentationRegenerative MedicineResearchRoleScreening procedureSmooth Muscle MyocytesStagingStem cellsStretchingSystemTechnologyTestingTissue EngineeringTissuesTranslationsWA01 cell lineWA09 Cell Lineangiogenesiscell growthcell typecombinatorialdesignexperiencehuman embryonic stem cellimprovednovelpublic health relevancescaffoldscale upshear stressstem cell differentiationstem cell divisionstem cell fatetoolvasculogenesis
项目摘要
DESCRIPTION (provided by applicant): Pluripotent human embryonic stem cells (hESCs) can be differentiated in vitro into multiple cell types, including cardiovascular cells (cardiomyocytes, vascular endothelial and smooth muscle cells). The ability to control the growth and differentiation of stem cells in vitro is essential for the successful application of differentiated cells for cell-based therapies. The appropriate cell types committed to a desired lineage, together with the relevant elements of the cardiovascular system, can be used to treat cardiovascular diseases. The proposed research on the identification of the optimal condition for controlling hESC fate uses a novel medium-high throughput microarray platform composed of comprehensive chemical-physical microenvironments. These include (1) immobilized growth factors (GFs) and extracellular matrix proteins (ECMPs), (2) mechanical properties of the ECM, and (3) external mechanical forces acting on the cells. Current knowledge indicates that each of these parameters (i.e., GFs, ECMPs, substrate rigidities, as well as mechanical loadings) plays roles in regulating stem cell fate, but the efficiency is low when acting alone. Since stem cells experience the influence of multiple microenvironmental factors which change during the developmental stages, it is essential to examine the combinatory effects of multi-factorial complexities of the niches, as proposed in the current research. In the proposed research, we will investigate the combinatorial effects of ECM proteins (ECMPs) and GFs on the differentiation of hESCs (Federally approved WA01 and WA09 cell lines). We have designed a hydrogel system to control the rigidities of matrices, covering a range encountered in different tissues, for our ECMP array in stem cell culture. We will also incorporate the flow and stretch devices developed in our lab into the microarray system to assess the roles of external mechanical forces in regulating the cell fate of hESCs on the ECMP/GF/Rigidity platform. This novel combinatory microarray system allows the comprehensive testing of the chemical-physical microenvironment for the choice of optimal conditions for hESC growth and differentiation. The use of such optimally chosen hESCs for translation to cardiovascular tissue engineering will provide the opportunity to significantly advance the development of artificial vessels, angiogenesis patches, as well as cell replacement for heart failure, which will in turn improve the healthcare of patients with cardiovascular diseases and the wellbeing of our citizens.
PUBLIC HEALTH RELEVANCE: Pluripotent human embryonic stem cells can be differentiated into multiple cell types, including cells in the cardiovascular systems. The appropriate cell types with the associated networks of vascular cells can be used to treat heart, lung, and blood diseases. This project is aiming at developing a novel systematic approach to understand, define, and ultimately control the process of stem cell differentiation, with the ultimate goal of developing tools of regenerative medicine to treat cardiovascular diseases.
描述(由申请人提供):多能人胚胎干细胞(hESC)可以在体外分化为多种细胞类型,包括心血管细胞(心肌细胞、血管内皮细胞和平滑肌细胞)。体外控制干细胞生长和分化的能力对于成功应用分化细胞进行基于细胞的治疗至关重要。致力于所需谱系的适当细胞类型与心血管系统的相关元件一起可用于治疗心血管疾病。 所提出的关于确定控制hESC命运的最佳条件的研究使用了一种由全面的化学-物理微环境组成的新型中高通量微阵列平台。这些包括(1)固定化的生长因子(GF)和细胞外基质蛋白(ECM),(2)ECM的机械性质,和(3)作用于细胞的外部机械力。目前的知识表明,这些参数中的每一个(即,GF、ECMP、基质刚性以及机械负荷)在调节干细胞命运中起作用,但单独作用时效率较低。由于干细胞经历了多个微环境因素的影响,这些因素在发育阶段会发生变化,因此有必要研究多因素复杂性的组合效应。在拟议的研究中,我们将研究ECM蛋白(ECMPs)和GF对hESC(联邦批准的WA 01和WA 09细胞系)分化的组合效应。我们已经设计了一种水凝胶系统来控制基质的刚性,覆盖了在不同组织中遇到的范围,用于我们在干细胞培养中的ECMP阵列。我们还将把我们实验室开发的流动和拉伸装置结合到微阵列系统中,以评估外部机械力在ECMP/GF/Rigidity平台上调节hESC细胞命运中的作用。这种新型组合微阵列系统可以全面测试化学物理微环境,以选择hESC生长和分化的最佳条件。使用这种最佳选择的hESC转化为心血管组织工程将为显着推进人工血管,血管生成补丁以及心力衰竭细胞替代的发展提供机会,这反过来将改善心血管疾病患者的医疗保健和我们公民的福祉。
公共卫生相关性:多能人类胚胎干细胞可以分化成多种细胞类型,包括心血管系统中的细胞。具有相关血管细胞网络的适当细胞类型可用于治疗心脏、肺和血液疾病。该项目旨在开发一种新的系统方法来理解,定义并最终控制干细胞分化的过程,最终目标是开发治疗心血管疾病的再生医学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 18.57万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 18.57万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 18.57万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 18.57万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9111932 - 财政年份:2012
- 资助金额:
$ 18.57万 - 项目类别:
相似海外基金
Designing and fabricating artificial blood cells for global shortages
设计和制造人造血细胞应对全球短缺
- 批准号:
DE240100236 - 财政年份:2024
- 资助金额:
$ 18.57万 - 项目类别:
Discovery Early Career Researcher Award
The Use of Blood Cells and Optical Cerebral Complex IV Redox States in a Porcine Model of CO Poisoning with Evaluation of Mitochondrial Therapy
血细胞和光脑复合物 IV 氧化还原态在猪 CO 中毒模型中的应用及线粒体治疗的评价
- 批准号:
10734741 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Elucidation of white blood cells propulsion mechanism under a cytokine concentration gradient assuming concentration Marangoni effect.
假设浓度马兰戈尼效应,阐明细胞因子浓度梯度下白细胞的推进机制。
- 批准号:
23KJ1753 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mechanisms of oxygen off-loading from red blood cells in murine models of human disease
人类疾病小鼠模型中红细胞的氧卸载机制
- 批准号:
10343967 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Study of somatic mutations in normal blood cells using whole-genome sequencing
使用全基因组测序研究正常血细胞的体细胞突变
- 批准号:
22K20840 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Standard Grant
Bioenergetics of red blood cells regulated by hydrogen sulfide
硫化氢调节红细胞的生物能
- 批准号:
RGPIN-2017-04392 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of oxygen off-loading from red blood cells in murine models of human disease
人类疾病小鼠模型中红细胞的氧卸载机制
- 批准号:
10548180 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Mechanical Characterization of Human Red Blood Cells
人红细胞的机械特性
- 批准号:
562095-2021 - 财政年份:2021
- 资助金额:
$ 18.57万 - 项目类别:
University Undergraduate Student Research Awards
Bioenergetics of red blood cells regulated by hydrogen sulfide
硫化氢调节红细胞的生物能
- 批准号:
RGPIN-2017-04392 - 财政年份:2021
- 资助金额:
$ 18.57万 - 项目类别:
Discovery Grants Program - Individual