Online Multivariate Statistical Neural Imaging Data Analysis

在线多元统计神经成像数据分析

基本信息

  • 批准号:
    7989731
  • 负责人:
  • 金额:
    $ 24.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In recent years, an explosion of imaging technology has brought us tantalizingly close to achieving the goal of imaging brain function with single neuron resolution: Using labeling techniques such as expressed reporters and bulk dye loading combined with imaging methods such as fast frame CCD, photodiode array, and traditional as well as multiphoton confocal imaging, we can now visualize complicated neural interactions at the level of cell culture, the brain slice preparation and even the intact animal, with single cell resolution. In our own work, we have found that this same technology paired with modern computers has resulted in the ability to collect masses of information far more quickly than we can process and understand it using standard workflow models. Additionally, there is a pressing need to adopt the systems biology strategy of automated database storage and classification of analysis results. We propose to address these and other issues with a focused technology development proposal which adreses the problem/need based criteria addressed by the Neurotechnology Research, Development and Enhancement Program. The PI, with an experimental and computational modeling background, and the co-PI, with a neural imaging data analysis background, bring complementary skills to this project. We will develop a common framework for data collection, meta-tagging and storage of image based time series. We will develop and implement algorithms that will allow for the on-line calculation of approximate or exact principal components and multivariate spectral characteristics during experimental manipulations. We will implement Canonical Correlation Analysis (CCA) and other techniques for the comparison of multiple datasets. By implementing multivariate methods for the analysis of ratiometric imaging data, we will lay the groundwork for extending these multivariate techniques and tools to full optical spectrum based-data collection. . PUBLIC HEALTH RELEVANCE: Increasingly, physiological imaging is helping us to understand how the brain works in health and disease. This work is relevant to public health because it will provide necessary tools for making physiological imaging more efficient and sensitive. In addition, it wil pave the way for using physiological imaging as a high-throughput tool.
描述(申请人提供):近年来,成像技术的爆炸性发展使我们非常接近使用单神经元分辨率成像脑功能的目标:使用表达报告和批量染料加载等标记技术,结合快速帧CCD、光电二极管阵列等成像方法,以及传统和多光子共聚焦成像,我们现在可以以单细胞分辨率在细胞培养、脑切片制备甚至完整动物的水平上可视化复杂的神经相互作用。在我们自己的工作中,我们发现,同样的技术与现代计算机相结合,导致收集大量信息的能力比我们使用标准工作流模型处理和理解信息的速度快得多。此外,迫切需要采用自动数据库存储和分析结果分类的系统生物学策略。我们建议通过有重点的技术开发提案来解决这些和其他问题,该提案符合神经技术研究、开发和增强计划解决的基于问题/需求的标准。具有实验和计算建模背景的PI和具有神经成像数据分析背景的co-PI为该项目带来了互补的技能。我们将为基于图像的时间序列的数据收集、元标记和存储开发一个通用框架。我们将开发和实施算法,允许在实验操作期间在线计算近似或精确的主成分和多变量光谱特性。我们将实施典型相关分析(CCA)和其他技术来比较多个数据集。通过实施比率成像数据的多变量分析方法,我们将为将这些多变量技术和工具扩展到基于全光谱的数据收集奠定基础。。 与公共健康相关:越来越多的生理成像正在帮助我们了解大脑在健康和疾病中是如何工作的。这项工作与公共健康相关,因为它将为提高生理成像的效率和灵敏度提供必要的工具。此外,它还将为生理成像作为高通量工具的使用铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

THOMAS J ROYSTON其他文献

THOMAS J ROYSTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('THOMAS J ROYSTON', 18)}}的其他基金

The Audible Human Project
有声人类计划
  • 批准号:
    8531700
  • 财政年份:
    2010
  • 资助金额:
    $ 24.2万
  • 项目类别:
The Audible Human Project
有声人类计划
  • 批准号:
    8112495
  • 财政年份:
    2010
  • 资助金额:
    $ 24.2万
  • 项目类别:
The Audible Human Project
有声人类计划
  • 批准号:
    7946297
  • 财政年份:
    2010
  • 资助金额:
    $ 24.2万
  • 项目类别:
The Audible Human Project
有声人类计划
  • 批准号:
    8326140
  • 财政年份:
    2010
  • 资助金额:
    $ 24.2万
  • 项目类别:
Online Multivariate Statistical Neural Imaging Data Analysis
在线多元统计神经成像数据分析
  • 批准号:
    8099695
  • 财政年份:
    2010
  • 资助金额:
    $ 24.2万
  • 项目类别:
The Audible Human Project
有声人类计划
  • 批准号:
    7493989
  • 财政年份:
    2007
  • 资助金额:
    $ 24.2万
  • 项目类别:
The Audible Human Project
有声人类计划
  • 批准号:
    7385281
  • 财政年份:
    2007
  • 资助金额:
    $ 24.2万
  • 项目类别:
A MULTIMODE SONIC & ULTRASONIC DIAGNOSTIC IMAGING METHOD
多模式索尼克
  • 批准号:
    6730912
  • 财政年份:
    2003
  • 资助金额:
    $ 24.2万
  • 项目类别:
A MULTIMODE SONIC & ULTRASONIC DIAGNOSTIC IMAGING METHOD
多模式索尼克
  • 批准号:
    6796262
  • 财政年份:
    2003
  • 资助金额:
    $ 24.2万
  • 项目类别:
NEW PARADIGMS IN TISSUE VIBRATION FOR DIAGNOSTIC METHODS
组织振动诊断方法的新范例
  • 批准号:
    6394737
  • 财政年份:
    2000
  • 资助金额:
    $ 24.2万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了