Developing Non-Ototoxic Aminoglycosides
开发非耳毒性氨基糖苷类药物
基本信息
- 批准号:8225109
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-21 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAminoglycoside AntibioticsAminoglycosidesAnimal ModelAnimalsAntibioticsAuditoryBindingBiochemicalBiochemical PathwayBiological AssayCellsChemical StructureCochleaCochlear ductCollaborationsComplexDataDatabasesDevelopmentEffectivenessEndolymphFDA approvedGentamicinsGoalsHair CellsHandImageImaging TechniquesIncidenceIon ChannelKnowledgeLaboratoriesModificationMolecularMonitorNephrotoxicOpticsPathway interactionsPropertyResearchResearch PersonnelResistanceRibosomesSiteSite-Directed MutagenesisSolutionsSpecificityStereociliumStructureTestingTexas redTissuesTransducersTreatment ProtocolsVertebral columnaminoglycoside-induced ototoxicityantimicrobialbasebody systemcell typechemical propertycostdesigninsightknowledge basenephrotoxicitynovelototoxicitypreventprogramsresearch studyskillssuccesstherapy designtissue culturetreatment planningtwo-photonuptake
项目摘要
DESCRIPTION (provided by applicant): Aminoglycoside (AGs) antibiotics are used worldwide because of their potent antimicrobial activities and low cost. They are widely used despite the significant side effects of ototoxicity and nephrotoxicity. Recent evidence from independent laboratories demonstrated that AGs accumulate rapidly in hair cells because of their ability to enter these cells through the mechanoelectric transducer channel located near the tops of the stereocilia. Channel biophysical properties promote entry through the channel but limit exit through these same channels. Our data clearly show that ototoxicity can be prevented by blocking entry via these channels. The goal of this proposal is to develop novel non-ototoxic aminoglycosides. Our team has unique insights into the biophysical properties of the mechanically gated channels and can use this knowledge to design compounds that are sterically and/or electrically restricted from entering the channel and therefore the hair cell. Sites for modification are selected on the AG backbone so as not to interfere with antimicrobial activity. We have in hand the ability to investigate these compounds at the channel, cellular, end organ, system and whole animal level, using electrophysiological, optical, molecular and pharmacological means to monitor ototoxicity as well as antimicrobial activity. Complementary to the development of these compounds will be identifying the mechanism of entry of the AGs into the endolymph compartment. Upon identification of this pathway we will devise means to limit transport of existing AGs so that a co-treatment plan might prevent access of the AGs to the MET channel and thus limit entry into hair cells. The focus of this proposal is to design treatment regimes, either by creating novel AGs, or co-treatment plans, that will ameliorate ototoxicity due to AG administration. At the end of the proposed two-year research period, we will have applied our unique knowledge base and skill sets to gain insights into the effectiveness of either of these approaches in reducing ototoxicity caused AGs.
PUBLIC HEALTH RELEVANCE: Aminoglycosides (AGs) are the most widely used antibiotics worldwide, despite having a high incidence of ototoxicity. We have shown that auditory hair cells are sensitive to AGs because of their high rate of AG uptake, arising from the ability of AGs to pass through a novel mechanosensitive ion channel located at the tops of the stereocilia. Our plan is to design new antibiotics that are sterically and/or electrically restricted from passing through this channel. In conjunction with this approach we will identify the mechanism by which AGs enter the endolymph solution and devise a cotreatment plan to block the responsible transport mechanism, thus preventing the AGs from reaching the ion channel that they permeate.
描述(由申请人提供):氨基糖苷类(AG)抗生素因其强效抗菌活性和低成本而在全球范围内使用。它们被广泛使用,尽管有显著的耳毒性和肾毒性副作用。来自独立实验室的最新证据表明,AG在毛细胞中迅速积累,因为它们能够通过位于静纤毛顶部附近的机电换能器通道进入这些细胞。通道生物物理性质促进通过通道的进入,但限制通过这些相同的通道的退出。我们的数据清楚地表明,耳毒性可以通过阻断这些通道来预防。本提案的目标是开发新型非耳毒性氨基糖苷类药物。我们的团队对机械门控通道的生物物理特性有独特的见解,并可以利用这些知识来设计空间和/或电限制进入通道并因此进入毛细胞的化合物。在AG骨架上选择修饰位点,以免干扰抗微生物活性。我们有能力在通道,细胞,终末器官,系统和整个动物水平上研究这些化合物,使用电生理,光学,分子和药理学手段监测耳毒性以及抗菌活性。这些化合物的开发的补充将是确定AG进入内淋巴室的机制。在鉴定该途径后,我们将设计限制现有AG运输的方法,以便共同治疗计划可以防止AG进入MET通道,从而限制进入毛细胞。该提案的重点是设计治疗方案,无论是通过创建新的AG,或共同治疗计划,这将改善耳毒性由于AG管理。在拟议的两年研究期结束时,我们将运用我们独特的知识基础和技能,深入了解这两种方法在减少AG引起的耳毒性方面的有效性。
公共卫生相关性:氨基糖苷类(AG)是全球使用最广泛的抗生素,尽管耳毒性发生率很高。我们已经表明,听觉毛细胞是敏感的AG,因为他们的高速率的AG摄取,所产生的能力的AG通过一个新的mechanosensitive离子通道位于顶部的静纤毛。我们的计划是设计新的抗生素,这些抗生素在空间和/或电学上受到限制,不能通过这个通道。结合这种方法,我们将确定AGs进入内淋巴溶液的机制,并设计一个cotreatment计划,以阻止负责任的运输机制,从而防止AGs到达离子通道,他们渗透。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony J Ricci其他文献
Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells
产后哺乳动物前庭毛细胞发育和再生的不协调成熟
- DOI:
10.1371/journal.pbio.3000326 - 发表时间:
2019-07 - 期刊:
- 影响因子:9.8
- 作者:
Tian Wang;Mamiko Niwa;Zahra N Sayyid;Davood K Hosseini;Nicole Pham;Sherri M Jones;Anthony J Ricci;Alan G Cheng - 通讯作者:
Alan G Cheng
Anthony J Ricci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony J Ricci', 18)}}的其他基金
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
- 批准号:
10778103 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10433182 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10617806 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Functional Integrity of the Aging Auditory Synapse
衰老听觉突触的功能完整性
- 批准号:
9151173 - 财政年份:2016
- 资助金额:
$ 19.99万 - 项目类别:
相似海外基金
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Shaping Next Generation Aminoglycoside Antibiotics for Treatment of Multidrug-Resistant Diseases
打造下一代氨基糖苷类抗生素治疗多重耐药性疾病
- 批准号:
10585038 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Creation of Next-generation Aminoglycoside Antibiotics Active against Multidrug-resistant Gram-negative Bacteria
开发对多重耐药革兰氏阴性菌具有活性的下一代氨基糖苷类抗生素
- 批准号:
20K06982 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shaping Next Generation Aminoglycoside Antibiotics for Treatment of Multidrug- Resistant Diseases
打造下一代氨基糖苷类抗生素治疗多重耐药性疾病
- 批准号:
9934590 - 财政年份:2019
- 资助金额:
$ 19.99万 - 项目类别:
Combating Antibiotic Resistance to Aminoglycoside Antibiotics through Chemical Synthesis
通过化学合成对抗氨基糖苷类抗生素的耐药性
- 批准号:
392481159 - 财政年份:2017
- 资助金额:
$ 19.99万 - 项目类别:
Research Fellowships
Shaping Next Generation Aminoglycoside Antibiotics for Treatment of Multidrug-Resistant Diseases
打造下一代氨基糖苷类抗生素治疗多重耐药性疾病
- 批准号:
9082038 - 财政年份:2016
- 资助金额:
$ 19.99万 - 项目类别:
Functional analysis of radical SAM enzymes involved in the biosynthesis of aminoglycoside antibiotics
氨基糖苷类抗生素生物合成中自由基SAM酶的功能分析
- 批准号:
26410174 - 财政年份:2014
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI:Synthesis of Aminoglycoside Antibiotics
EAPSI:氨基糖苷类抗生素的合成
- 批准号:
1106886 - 财政年份:2011
- 资助金额:
$ 19.99万 - 项目类别:
Fellowship Award
Preclinical evaluation of aminoglycoside antibiotics-derived amphiphiles (AADAs)
氨基糖苷类抗生素衍生的两亲物 (AADA) 的临床前评估
- 批准号:
185482 - 财政年份:2009
- 资助金额:
$ 19.99万 - 项目类别:
Operating Grants
AMINOGLYCOSIDE ANTIBIOTICS FOR CYSTIC FIBROSIS
治疗囊性纤维化的氨基糖苷类抗生素
- 批准号:
6565399 - 财政年份:2001
- 资助金额:
$ 19.99万 - 项目类别: