Uncertainties in Modeling Spatially-Resolved Climate Change Health Impacts

空间解析气候变化对健康影响建模的不确定性

基本信息

  • 批准号:
    8153030
  • 负责人:
  • 金额:
    $ 23.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): To characterize population vulnerability to climate change, there is a tremendous need to better understand and quantify the magnitude, distribution, as well as the uncertainties associated with the health impacts projections. We propose to study the spatial variations in population vulnerability related to climate change in the east coast of U.S. through analyzing the health impacts (i.e., mortality) from air pollution and heat waves exposures at 4km resolution during the decades of 2000, 2030 and 2050 under two greenhouse gas emission scenarios. Our proposed study will take advantage of the air pollution and weather projections data that are currently being generated in a project ('Assessing the Cumulative Climate-Related Health Risks in the Eastern U.S') funded by the Centers for Disease Control and Prevention (CDC). IPCC 5th assessment reports (AR5) scenarios are used to generate this unique dataset and the simulations are based on the enhanced Community Climate System Model (CCSM4), coupled with the Community Multi-scale Air Quality model (CMAQ) and the Weather Research and Forecasting model (WRF). The fine resolution in this dataset allows us to study the spatial heterogeneity in the health impacts projections, particularly important for identifying target locations to facilitate preparedness efforts and effective adaptation strategies. In addition to identifying vulnerable geographical locations with increased health impacts related to climate change, we will also study the magnitude of uncertainties introduced by each analytical step of climate change health impacts modeling. In particular, we will determine the relative importance of four components - greenhouse gas emission scenarios, meteorological and air quality modeling, exposure-response characterization, and future population distribution projections and the age structure. We will combine sensitivity analysis and Monte Carlo simulations to test the hypothesis that there are significant variations in the magnitude of uncertainties introduced by each analytical step of climate change health impacts modeling. The uncertainty analysis will help government agencies develop robust and appropriate responses to health impacts caused by climate change, and allocate resources for future research. The end products of our proposed work will be 1) county-specific mortality projections based on combined health impacts from three stressors, PM2.5, ozone and heat waves, along the east coast of U.S. including their temporal evolution up to the decade of 2050, and a graphical representation of the vulnerable locations, 2) a spatially explicit representation of the uncertainty of these estimates, apportioned to error sources. Our work will allow for improved precision of health outcome projections on a very fine spatial scale, facilitating targeted preparedness in the vulnerable populations. PUBLIC HEALTH RELEVANCE: To assess population vulnerability to climate change, we propose to identify vulnerable geographical locations with increased health impacts (i.e., mortality) due to heat waves and air pollution exposures. We will also study the magnitude of uncertainties introduced by each analytical step of health impacts modeling.
描述(由申请人提供):为了描述人口对气候变化的脆弱性,非常需要更好地了解和量化与健康影响预测相关的幅度,分布以及不确定性。我们建议通过分析健康影响(即,在2000年、2030年和2050年的几十年里,在两种温室气体排放情景下,以4公里分辨率测量空气污染和热浪暴露造成的死亡率。我们提出的研究将利用目前由疾病控制和预防中心(CDC)资助的一个项目(“评估美国东部累积的气候相关健康风险”)中产生的空气污染和天气预测数据。IPCC第五次评估报告(AR5)情景用于生成这一独特的数据集,模拟基于增强的社区气候系统模型(CCSM 4),加上社区多尺度空气质量模型(CMAQ)和天气研究和预报模型(WRF)。该数据集的高分辨率使我们能够研究健康影响预测的空间异质性,这对于确定目标位置以促进备灾工作和有效的适应战略尤为重要。除了确定与气候变化相关的健康影响增加的脆弱地理位置外,我们还将研究气候变化健康影响建模的每个分析步骤所引入的不确定性的大小。特别是,我们将确定四个组成部分的相对重要性-温室气体排放情景,气象和空气质量建模,气候响应特征,未来人口分布预测和年龄结构。我们将结合联合收割机敏感性分析和蒙特卡罗模拟来检验假设,即气候变化健康影响建模的每个分析步骤所引入的不确定性的大小存在显着变化。不确定性分析将有助于政府机构制定强有力的和适当的应对气候变化造成的健康影响,并为未来的研究分配资源。我们建议的工作的最终产品将是1)根据美国东海岸沿着的三种压力源(PM2.5、臭氧和热浪)的综合健康影响进行的特定县死亡率预测,包括到2050年的十年的时间演变,以及脆弱地点的图形表示,2)这些估计的不确定性的空间明确表示,分配到错误源。我们的工作将有助于在非常精细的空间尺度上提高卫生成果预测的准确性,促进弱势群体有针对性的准备工作。 公共卫生关系:为了评估人口对气候变化的脆弱性,我们建议确定健康影响增加的脆弱地理位置(即,死亡率),由于热浪和空气污染暴露。我们还将研究健康影响建模的每个分析步骤所引入的不确定性的大小。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Liu其他文献

Formal Verification of Process Layer with Petri nets and Z
使用 Petri 网和 Z 对过程层进行形式化验证
An efficient p-ECR move based on maximum likelihood by neighbor joining
基于邻居加入最大似然的高效 p-ECR 移动
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yang Liu;Jian-Fu Li;Mao-Zu Guo,
  • 通讯作者:
    Mao-Zu Guo,
Secure multi-label data classification in cloud by additionally homomorphic encryption
通过额外的同态加密在云中保护多标签数据分类
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Liu Yu Luo;Youwen Zhu;Yang Liu;Xingxin Li
  • 通讯作者:
    Xingxin Li
Requirement Verification of Networked Software Goals with Multi-valued Logic
具有多值逻辑的网络化软件目标的需求验证

Yang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Liu', 18)}}的其他基金

Spatially resolved multiomics profiling of microbes and their host tissue
微生物及其宿主组织的空间分辨多组学分析
  • 批准号:
    10713736
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
Mapping the Cellular Responses to DNA Double-Strand Breaks Using On-Demand CRISPR technologies and High-resolution Fluorescence Microscopy
使用按需 CRISPR 技术和高分辨率荧光显微镜绘制细胞对 DNA 双链断裂的反应
  • 批准号:
    10715720
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
Climate & Health Actionable Research and Translation Center
气候
  • 批准号:
    10835460
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
Climate & Health Actionable Research and Translation Center
气候
  • 批准号:
    10835461
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
Super-Resolution Imaging of Higher-Order Heterochromatin Structure for Early Detection of Lung Carcinogenesis
高阶异染色质结构的超分辨率成像用于早期检测肺癌
  • 批准号:
    10435645
  • 财政年份:
    2022
  • 资助金额:
    $ 23.25万
  • 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
  • 批准号:
    10398183
  • 财政年份:
    2020
  • 资助金额:
    $ 23.25万
  • 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
  • 批准号:
    10605199
  • 财政年份:
    2020
  • 资助金额:
    $ 23.25万
  • 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
  • 批准号:
    10223251
  • 财政年份:
    2020
  • 资助金额:
    $ 23.25万
  • 项目类别:
Three dimensional nanoscale nuclear architecture mapping based taxonomy of precursor lesions for predicting colorectal cancer risk
基于三维纳米级核结构映射的前体病变分类法用于预测结直肠癌风险
  • 批准号:
    9756510
  • 财政年份:
    2019
  • 资助金额:
    $ 23.25万
  • 项目类别:
Three dimensional nanoscale nuclear architecture mapping based taxonomy of precursor lesions for predicting colorectal cancer risk
基于三维纳米级核结构映射的前体病变分类法用于预测结直肠癌风险
  • 批准号:
    10590702
  • 财政年份:
    2019
  • 资助金额:
    $ 23.25万
  • 项目类别:

相似国自然基金

湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
  • 批准号:
    51976048
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
  • 批准号:
    MR/Y020014/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Fellowship
Suppression of air pollution via aerosol mediated removal of peroxy radicals
通过气溶胶介导去除过氧自由基抑制空气污染
  • 批准号:
    NE/Y000226/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant
Geographic and Sociodemographic Variability in Air Pollution Exposure
空气污染暴露的地理和社会人口变化
  • 批准号:
    2342266
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Standard Grant
Air-pollution Innovation in Regional-forecasts utilising operational Satellite Applications and Technologies (AIRSAT)
利用卫星应用和技术(AIRSAT)进行区域预测的空气污染创新
  • 批准号:
    NE/Y005147/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
  • 批准号:
    485322
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Operating Grants
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
  • 批准号:
    23H03158
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Political Economy of Vulnerability to Air Pollution in Kathmandu Valley, Nepal
尼泊尔加德满都谷地空气污染脆弱性的政治经济学
  • 批准号:
    2884672
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Studentship
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
  • 批准号:
    2885122
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Studentship
Impacts of Air Pollution from Ultrafine Tire-Wear Particles on Cardiorespiratory Health
超细轮胎磨损颗粒造成的空气污染对心肺健康的影响
  • 批准号:
    2899750
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Studentship
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 23.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了