Chemical Mapping of Chromate Uptake, Localization, and Reduction in Remediating B

修复 B 中铬酸盐吸收、定位和还原的化学图谱

基本信息

  • 批准号:
    7995998
  • 负责人:
  • 金额:
    $ 30.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-08 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cr(VI) contamination of soil and groundwater is a significant problem worldwide. In the United States, chromate is the third most common contaminant of hazardous waste sites and the second most common inorganic contaminant found in the environment. In situ and ex situ bioremediation processes that exploit the intrinsic metabolic capabilities of dissimilatory metal ion-reducing bacteria (DMRB) remain potent, potentially cost-effective approaches to the reductive immobilization or detoxification of environmental contaminants. The microbial catalysis of Cr(VI) reduction to sparingly soluble, less bioavailable Cr(III), for example, is a promising remediation strategy for Cr(VI)-contaminated subsurface soil and groundwater environments. The genus Shewanella represents one of the few groups of microorganisms that have received intensive investigation because of their wide ecological distribution, diverse respiratory capacities, and environmental relevance. Despite several advances made in elucidating Shewanella biology as it relates to chromate transformation, fundamental questions about the specific chromate reduction mechanism remain unclear. This information gap includes (i) the identity of dedicated chromate reductase(s), (ii) the cellular localization of chromate transformation (e.g., distal appendages, outer cell surface, periplasm, cytoplasmic membrane, cytosol), and (iii) the environmental parameters under which microbial populations have the greatest specific chromate reduction rates. The problem in predicting and assessing bioremediation performance is compounded by the lack of fundamental knowledge of the molecular basis, regulatory mechanisms, and biochemistry enabling bacterial metal-reducing capabilities. We propose to engineer nanoscale methodologies, comprising of chromate-tagged nanoparticles and intracellularly grown gold nanoislands to function as enhancers for Surface Enhanced resonance Raman scattering probing to generate chemical maps of chromate reduction sites as well as to monitor the reduction dynamics in exquisite molecular and single-organism detail. Objectives of this study are to 1) assess the impact of gold nanoparticle composition, geometry, and functionality on cell viability, growth, and efficacy of microbial chromate reduction using S. oneidensis as a model system; 2) track the localization of chromate transformation at single-cell resolution using functionalized gold nanostructures as well as using intracellularly grown gold nanoislands by Raman chemical imaging; and 3) evaluate the influence of bioremediation-relevant environmental factors on chromate transport, localization, and reduction rates. The development of passive and active nanoprobes in conjunction with confocal Raman chemical imaging will constitute a significant step in enabling a platform for dynamic monitoring of intracellular events and compartmentalization of metal reduction sites at single-cell resolution. The knowledge gained from this novel study will contribute to the development of scientifically grounded strategies for improving bioremediation efficacy.
描述(由申请人提供): 土壤和地下水的Cr(VI)污染是一个世界性的重大问题。在美国,铬酸盐是危险废物场的第三大常见污染物,也是环境中第二大常见无机污染物。利用异化金属离子还原菌(DMRB)的内在代谢能力的原位和异位生物修复过程仍然是有效的,潜在的成本效益的方法来还原固定或解毒的环境污染物。例如,微生物催化将Cr(VI)还原为微溶的、生物可利用性较低的Cr(III)是Cr(VI)污染的地下土壤和地下水环境的一种有前途的修复策略。希瓦氏菌属代表了少数几组微生物之一,因为它们广泛的生态分布,多样的呼吸能力和环境相关性而受到深入研究。尽管在阐明希瓦氏菌生物学方面取得了一些进展,因为它与铬酸盐转化有关,但有关特定铬酸盐还原机制的基本问题仍不清楚。这种信息缺口包括(i)专用铬酸盐还原酶的身份,(ii)铬酸盐转化的细胞定位(例如,远端附属物,外细胞表面,周质,细胞质膜,胞质溶胶),和(iii)环境参数下,微生物种群具有最大的比铬酸盐还原率。预测和评估生物修复性能的问题是由于缺乏分子基础、调控机制和生物化学方面的基本知识而加剧的,这些知识使细菌的金属还原能力成为可能。我们建议设计纳米级方法,包括铬酸盐标记的纳米颗粒和细胞内生长的金纳米岛作为增强剂的表面增强共振拉曼散射探测生成铬酸盐还原位点的化学图谱,以及监测精致的分子和单一生物体细节的还原动力学。本研究的目的是:1)评估金纳米颗粒的组成,几何形状和功能对细胞活力,生长和微生物铬酸盐还原效率的影响,使用S。oneidensis作为一个模型系统; 2)通过拉曼化学成像,使用功能化的金纳米结构以及使用细胞内生长的金纳米岛,以单细胞分辨率跟踪铬酸盐转化的定位;以及3)评估生物修复相关的环境因素对铬酸盐转运、定位和还原速率的影响。与共焦拉曼化学成像相结合的被动和主动纳米探针的开发将构成一个重要的步骤,使一个平台,用于动态监测细胞内的事件和划分的金属还原位点在单细胞分辨率。从这项新的研究中获得的知识将有助于发展科学的战略,提高生物修复的效果。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface-enhanced Raman imaging of intracellular bioreduction of chromate in Shewanella oneidensis.
  • DOI:
    10.1371/journal.pone.0016634
  • 发表时间:
    2011-02-25
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ravindranath SP;Henne KL;Thompson DK;Irudayaraj J
  • 通讯作者:
    Irudayaraj J
Inside single cells: quantitative analysis with advanced optics and nanomaterials.
Intracellularly grown gold nanoislands as SERS substrates for monitoring chromate, sulfate and nitrate localization sites in remediating bacteria biofilms by Raman chemical imaging.
细胞内生长的金纳米岛作为 SERS 底物,用于通过拉曼化学成像监测修复细菌生物膜中的铬酸盐、硫酸盐和硝酸盐定位位点。
  • DOI:
    10.1016/j.aca.2012.07.037
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Ravindranath,SandeepP;Kadam,UlhasS;Thompson,DorotheaK;Irudayaraj,Joseph
  • 通讯作者:
    Irudayaraj,Joseph
Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays.
  • DOI:
    10.1039/c5nr04810a
  • 发表时间:
    2015-12-21
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hu Y;Lee S;Kumar P;Nian Q;Wang W;Irudayaraj J;Cheng GJ
  • 通讯作者:
    Cheng GJ
Gold nanoprobes for theranostics.
  • DOI:
    10.2217/nnm.11.155
  • 发表时间:
    2011-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Panchapakesan B;Book-Newell B;Sethu P;Rao M;Irudayaraj J
  • 通讯作者:
    Irudayaraj J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph MK Irudayaraj其他文献

Joseph MK Irudayaraj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph MK Irudayaraj', 18)}}的其他基金

Retinal Ischemia Treatment by Oxygen Nanobubbles
氧纳米气泡治疗视网膜缺血
  • 批准号:
    10723843
  • 财政年份:
    2023
  • 资助金额:
    $ 30.08万
  • 项目类别:
Label-free, real-time detection of kinase activity in vitro and in single cells u
无标记、实时检测体外和单细胞中的激酶活性
  • 批准号:
    8473183
  • 财政年份:
    2011
  • 资助金额:
    $ 30.08万
  • 项目类别:
Chemical Mapping of Chromate Uptake, Localization, and Reduction in Remediating B
修复 B 中铬酸盐吸收、定位和还原的化学图谱
  • 批准号:
    7572265
  • 财政年份:
    2009
  • 资助金额:
    $ 30.08万
  • 项目类别:
Multiplex arrays using Confocal Raman for BRCA1 alternative splice profiling
使用共焦拉曼进行 BRCA1 替代剪接分析的多重阵列
  • 批准号:
    7100387
  • 财政年份:
    2006
  • 资助金额:
    $ 30.08万
  • 项目类别:
Multiplex arrays using Confocal Raman for BRCA1 alternative splice profiling
使用共焦拉曼进行 BRCA1 替代剪接分析的多重阵列
  • 批准号:
    7198004
  • 财政年份:
    2006
  • 资助金额:
    $ 30.08万
  • 项目类别:

相似国自然基金

Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
  • 批准号:
    81971557
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
  • 批准号:
    51678163
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
  • 批准号:
    BB/Y003187/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
  • 批准号:
    2349218
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
  • 批准号:
    23K25843
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 30.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了