Connecting Brain Networks Across Subjects and Across Modalities
连接跨学科和跨模式的大脑网络
基本信息
- 批准号:7949098
- 负责人:
- 金额:$ 33.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBrainBrain imagingCaenorhabditis elegansCharacteristicsCognitiveCollectionCommunicationDataDiffusion Magnetic Resonance ImagingHumanIndividualInternetInvestigationLocationMapsMethodsMetricModalityNervous system structurePrevalenceProcessPropertyPublished CommentResearch PersonnelSensory ProcessSignal TransductionSocial NetworkStructureStructure-Activity RelationshipTimebasehigh schoolimaging modalityinterestnervous system disorderneuroimagingpublic health relevancesocialtheoriestool
项目摘要
DESCRIPTION (provided by applicant): In recent years, network analyses of brain imaging data have increased in popularity. Such analyses allow investigators to describe the structural or functional organization of the brain as a whole, rather than focusing only on the areas with the strongest signal. Network analyses allow characterization of a network as a whole, as well as how each network node contributes to the network. Furthermore, hierarchical organization of brain networks can be described as a collection of tightly interconnected clusters of nodes, known as modules. Such modules often spatially coincide with brain areas relevant to certain cognitive and sensory processes. Compared to other types of network data, brain network data have unique properties. The first property is that multiple realizations of the brain network can be observed from multiple subjects, which is simply impossible in many social or technological networks since there is only one network of interest. Secondly, brain networks can be aligned across subjects at each node (which can be an anatomical area or a voxel) or at functionally relevant modules. One way to take advantage of these properties is to combine brain network data. This enables researchers to investigate consistent network properties across subjects. In this proposal, a methodological framework will be developed to analyze multiple network data together. At first, a framework for a group analysis will be developed by building a group brain network from multiple subjects. This can be accomplished by aligning networks across subjects at each node (Specific Aim 1) or module (Specific Aim 2). In addition to combining networks across subjects, a framework to combine brain network data across image modalities will be developed in order to examine similarities and differences in structural and functional brain networks (Specific Aim 3). Multiple structural and functional brain network studies have indicated commonalities in the network structures and the location of key nodes. Thus, the proposed methods will provide a highly needed tool for investigations of such structure-function relationships.
PUBLIC HEALTH RELEVANCE: The proposed project will develop tools necessary to understand how different brain areas are connected in terms of structure and function. The resulting methods can be applied to a wide variety of neuroimaging studies on cognitive processes and neurological disorders, and can provide a completely new perspective of the brain as a single network, rather than focusing on identifying the most abnormal areas in the brain.
描述(申请人提供):近年来,对大脑成像数据的网络分析越来越流行。这样的分析使研究人员能够描述大脑的结构或功能组织作为一个整体,而不是只关注信号最强的区域。网络分析允许将网络作为一个整体进行表征,以及每个网络节点如何对网络做出贡献。此外,大脑网络的分层组织可以被描述为紧密互连的节点集群的集合,称为模块。这样的模块通常在空间上与与某些认知和感觉过程相关的大脑区域重合。与其他类型的网络数据相比,脑网络数据具有独特的属性。第一个特性是,可以从多个对象观察到大脑网络的多种实现,这在许多社会或技术网络中是不可能的,因为只有一个感兴趣的网络。其次,大脑网络可以在每个节点(可以是解剖区域或体素)或功能相关的模块上跨受试者对齐。利用这些特性的一种方法是将大脑网络数据结合起来。这使研究人员能够跨受试者调查一致的网络属性。在这项提案中,将开发一种方法框架来一起分析多个网络数据。首先,通过建立多个受试者的群体大脑网络,建立一个群体分析的框架。这可以通过在每个节点(具体目标1)或模块(具体目标2)的受试者之间调整网络来实现。除了合并不同受试者的网络外,还将制定一个框架,以合并不同成像方式的脑网络数据,以检查结构和功能脑网络的异同(具体目标3)。多种结构和功能的脑网络研究表明,在网络结构和关键节点的位置上存在共性。因此,所提出的方法将为研究这种结构-功能关系提供一个非常必要的工具。
与公共健康相关:拟议的项目将开发必要的工具,以了解不同大脑区域在结构和功能方面是如何连接的。由此产生的方法可以应用于各种关于认知过程和神经障碍的神经成像研究,并可以提供一个全新的视角,将大脑作为一个单一的网络,而不是专注于识别大脑中最异常的区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Satoru Hayasaka其他文献
Satoru Hayasaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Satoru Hayasaka', 18)}}的其他基金
Connecting Brain Networks Across Subjects and Across Modalities
连接跨学科和跨模式的大脑网络
- 批准号:
8252170 - 财政年份:2010
- 资助金额:
$ 33.29万 - 项目类别:
Connecting Brain Networks Across Subjects and Across Modalities
连接跨学科和跨模式的大脑网络
- 批准号:
8456189 - 财政年份:2010
- 资助金额:
$ 33.29万 - 项目类别:
Connecting Brain Networks Across Subjects and Across Modalities
连接跨学科和跨模式的大脑网络
- 批准号:
8066278 - 财政年份:2010
- 资助金额:
$ 33.29万 - 项目类别:
Development of a Power Calculation Tool for Neuroimaging Studies
神经影像研究功率计算工具的开发
- 批准号:
7589260 - 财政年份:2008
- 资助金额:
$ 33.29万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 33.29万 - 项目类别:
Small Business Research Initiative
A large cross-disorder study of premorbid estimated intelligence and structural brain imaging in psychiatric disorders
精神疾病病前估计智力和结构脑成像的大型跨疾病研究
- 批准号:
23K07001 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive and brain imaging correlates of apathy- components in asymptomatic middle aged individuals at high ADRD- risk
认知和脑成像与 ADRD 高风险无症状中年个体的冷漠成分相关
- 批准号:
10875019 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
- 批准号:
490288 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Operating Grants
Age-related hearing impairment and brain reserve using brain imaging analysis
使用脑成像分析与年龄相关的听力障碍和大脑储备
- 批准号:
23K16666 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
- 批准号:
10725586 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Transcranial Whole Brain Imaging by Microwave-induced Thermoacoustics
微波诱导热声学经颅全脑成像
- 批准号:
23H03754 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10083773 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Small Business Research Initiative
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别: