Nanostructured Ultrafiltration Membranes for Biological Applications
用于生物应用的纳米结构超滤膜
基本信息
- 批准号:8137904
- 负责人:
- 金额:$ 45.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAluminum OxideArchitectureAreaBiochemicalBiologicalBiological SciencesBiomanufacturingBiomedical ResearchBloodCaliberCardiac Surgery proceduresCaringCell Culture TechniquesCellsCeramicsChemistryColoradoCommunitiesComplementComplexCustomDevelopmentDiagnosticEnd stage renal failureEnsureEvaluationFamilyFeedbackFractionationGlucoseGoalsGovernmentHealth BenefitHealthcareHemodialysisInvestmentsLaboratoriesLaboratory StudyLettersManufacturer NameMarketingMedicalMedical ResearchMembraneMissionMoldsMolecular Sieve ChromatographyMolecular WeightNational Institute of General Medical SciencesNorwayNucleic AcidsPatientsPerformancePersonsPhasePolymersPolysaccharidesProcessProteinsReadinessReproducibilityResearch PersonnelSecureSmall Business Innovation Research GrantStagingStructureSurfaceSwitzerlandSyringesTechnologyTimeTubeUltrafiltrationUniversitiesVirusWaterWater PurificationWidthWorkanalogbasebioimagingcommercializationcostfallsindustry partnerinterestmacromoleculemeetingsmicrochipnanoscalenanostructurednovelproduct developmentprototypepublic health relevanceresearch and development
项目摘要
DESCRIPTION (provided by applicant): This multi-phase SBIR project targets a significant problem within the mission of the National Institute of General Medical Sciences: rapid size-based purification and separation of macromolecules, including proteins, nucleic acids and polysaccharides. The main objective is to develop novel ultrafiltration membranes with unprecedented sharp and controllable molecular-weight cut-off (MWCO) and reduced fouling. Such membranes are needed to fully realize the potential benefits of ultrafiltration (UF) and thereby address various pressing needs in biochemical and medical research, medical care, bioanalysis and biomanufacturing. Synkera aims to addresses this challenge by developing and commercializing membranes made from self-organized nanoporous ceramic with practically monodisperse nanometer-scale pores. At the core of this approach, which was proven feasible in Phase I, is Synkera's unprecedented ability to precisely tune the membrane pore diameter to any value in the 0.5-150 nm range. All the key Phase I objectives have been met or exceeded. For the first time, Synkera fabricated prototypes of such membranes and demonstrated their superior performance in comparison with commercial membranes. A clear breakthrough opportunity is now open to develop a whole new family of UF membranes for a variety of applications with enormous market potential and technical, economical, and health benefits to the end users, consumers and patients. Not only do the new membranes offer a performance improvement for established UF uses, but the advanced architecture and unrivaled control of the structure of Synkera's membranes also potentially enable new breakthrough applications such as fractionation of complex macromolecule mixtures. To fully explore the potential of this technology, Synkera established collaborative R&D with several academic and industrial partners. The near-term products based on the proposed technology include planar UF filters that outperform currently available membranes, as well as application-specific membranes (e.g., for protein separation) and bioanalysis substrates (e.g., for glucose sensing). In partnership with OEM manufacturers of biomedical consumables, we will also develop and commercialize centrifuge, syringe and in-line filters, filter cartridges, multiwell-plate inserts, and UF modules. The main objective of Phase II is now to perform a systematic development of the membrane technology to meet the requirements of different applications, and advance it to a readiness level that enables inexpensive yet high-performance membranes and derivative products.
PUBLIC HEALTH RELEVANCE: The project addresses a significant problem in biomedical research and medical care: rapid size-based purification and separation of macromolecules, including proteins, nucleic acids and polysaccharides. The development of novel advanced ultrafiltration membranes with unprecedented sharp and controllable molecular-weight cut-off and reduced fouling is proposed. The proposed technology will enable a novel family of high-performance membranes for use in biochemical analysis, laboratory studies, and, potentially, in hemodialysis for treatment of end-stage renal failure and in open heart surgery for blood oxygenation.
描述(申请人提供):这个多阶段SBIR项目针对的是国家普通医学科学研究所任务中的一个重要问题:基于大小的快速纯化和分离大分子,包括蛋白质、核酸和多糖。主要目标是开发具有前所未有的锐利和可控截留分子量(MWCO)并减少污染的新型超滤膜。需要这种膜来充分实现超滤(UF)的潜在好处,从而满足生化和医学研究、医疗保健、生物分析和生物制造方面的各种迫切需求。Synkera的目标是通过开发和商业化由自组织纳米多孔陶瓷制成的膜来应对这一挑战,这些陶瓷具有几乎单分散的纳米级孔。这种方法在第一阶段被证明是可行的,其核心是Synkera前所未有的能力,可以将膜孔径精确调整到0.5-150 nm范围内的任何值。所有关键的第一阶段目标都已达到或超过。Synkera首次制造了这种膜的原型,并展示了与商业膜相比的优越性能。现在有一个明显的突破性机会,可以为各种应用开发全新的超滤膜系列,具有巨大的市场潜力,并为最终用户、消费者和患者带来技术、经济和健康方面的好处。新型膜不仅为现有的超滤应用提供了性能改进,而且Synkera膜的先进结构和无与伦比的结构控制也可能使新的突破性应用成为可能,例如复杂大分子混合物的分级。为了充分挖掘这项技术的潜力,Synkera与多个学术和工业合作伙伴建立了协作研发。基于拟议技术的近期产品包括性能优于目前可用的膜的平面超滤过滤器,以及特定用途的膜(例如,用于蛋白质分离)和生物分析底物(例如,用于葡萄糖传感)。我们还将与生物医用耗材的OEM制造商合作,开发离心机、注射器和在线过滤器、滤芯、多孔板插件和超滤模块,并将其商业化。第二阶段的主要目标现在是对膜技术进行系统开发,以满足不同应用的需求,并将其提升到准备就绪的水平,从而能够实现廉价而高性能的膜及其衍生产品。
公共卫生相关性:该项目解决了生物医学研究和医疗保健中的一个重要问题:基于大小的快速纯化和分离大分子,包括蛋白质、核酸和多糖。提出了开发具有前所未有的锐利和可控截留分子量并减少污染的新型先进超滤膜的建议。这项拟议的技术将使一系列新的高性能膜能够用于生化分析、实验室研究,并可能用于治疗终末期肾功能衰竭的血液透析和用于血液氧合的心内直视手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg G. Polyakov其他文献
Oleg G. Polyakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg G. Polyakov', 18)}}的其他基金
Ceramic Electron Microscopy Grids for Cell Culturing and Multiscale Imaging
用于细胞培养和多尺度成像的陶瓷电子显微镜网格
- 批准号:
8326089 - 财政年份:2010
- 资助金额:
$ 45.05万 - 项目类别:
Ceramic Electron Microscopy Grids for Cell Culturing and Multiscale Imaging
用于细胞培养和多尺度成像的陶瓷电子显微镜网格
- 批准号:
8200685 - 财政年份:2010
- 资助金额:
$ 45.05万 - 项目类别:
Nanostructured Ultrafiltration Membranes for Biological Applications
用于生物应用的纳米结构超滤膜
- 批准号:
8001563 - 财政年份:2009
- 资助金额:
$ 45.05万 - 项目类别:
Nanostructured Ultrafiltration Membranes for Biological Applications
用于生物应用的纳米结构超滤膜
- 批准号:
7611645 - 财政年份:2009
- 资助金额:
$ 45.05万 - 项目类别:
Novel Ceramic Microchannel Plates for Biomedical Imaging
用于生物医学成像的新型陶瓷微通道板
- 批准号:
6882551 - 财政年份:2005
- 资助金额:
$ 45.05万 - 项目类别:
Novel Ceramic Microchannel Plates for Biomedical Imaging
用于生物医学成像的新型陶瓷微通道板
- 批准号:
7061368 - 财政年份:2005
- 资助金额:
$ 45.05万 - 项目类别:
相似海外基金
Epitaxial Film Growth and Characterization of Stable and Metastable Gallium-Aluminum-Oxide Polymorphs
稳定和亚稳定镓铝氧化物多晶型物的外延膜生长和表征
- 批准号:
2324375 - 财政年份:2023
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
Collaborative Research: Laboratory and Observational Investigations of Aluminum Oxide Analogs of Stardust
合作研究:星尘氧化铝类似物的实验室和观测研究
- 批准号:
2109340 - 财政年份:2021
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
Collaborative Research: Laboratory and Observational Investigations of Aluminum Oxide Analogs of Stardust
合作研究:星尘氧化铝类似物的实验室和观测研究
- 批准号:
2106926 - 财政年份:2021
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
The influence of doping and annealing onto the lattice dynamics, band structure and free charge carrier properties in monoclinic gallium aluminum oxide semiconductor alloys
掺杂和退火对单斜晶系铝镓氧化物半导体合金晶格动力学、能带结构和自由载流子性能的影响
- 批准号:
1808715 - 财政年份:2018
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
Hydrogen Terminated Diamond MOSFETs by Hydrogen Containing Aluminum Oxide Thin Film
采用含氢氧化铝薄膜的氢封端金刚石 MOSFET
- 批准号:
18K13804 - 财政年份:2018
- 资助金额:
$ 45.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Aluminum Oxide Nanoparticles Conjugated to Antigens Potently Induce Tumor Specifi
与抗原结合的氧化铝纳米颗粒可有效诱导肿瘤特异性
- 批准号:
8688173 - 财政年份:2013
- 资助金额:
$ 45.05万 - 项目类别:
Aluminum Oxide Nanoparticles Conjugated to Antigens Potently Induce Tumor Specifi
与抗原结合的氧化铝纳米颗粒可有效诱导肿瘤特异性
- 批准号:
8383078 - 财政年份:2013
- 资助金额:
$ 45.05万 - 项目类别:
STTR PHASE I: Alpha phase crystalline aluminum oxide coated at temperatures below 500 C using PVD
STTR 相 I:使用 PVD 在低于 500 C 的温度下涂覆 α 相结晶氧化铝
- 批准号:
0739659 - 财政年份:2008
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
MRI: Acquisition of an Ultra-High Vacuum Scanning Tunneling Microscope for Study of Local Electronic Inhomogeneity and Disorder in Aluminum Oxide
MRI:获取超高真空扫描隧道显微镜,用于研究氧化铝中的局部电子不均匀性和无序性
- 批准号:
0619236 - 财政年份:2006
- 资助金额:
$ 45.05万 - 项目类别:
Standard Grant
Aluminum oxide fibre mullite matrix composites with impact and thermal shock-resistance inferior or equal to 1300°C.
抗冲击和耐热震性能≤1300℃的氧化铝纤维莫来石基复合材料。
- 批准号:
234927-2000 - 财政年份:2003
- 资助金额:
$ 45.05万 - 项目类别:
Strategic Projects - Group














{{item.name}}会员




