A VHA NLP Software Ecosystem for Collaborative Development and Integration
用于协作开发和集成的 VHA NLP 软件生态系统
基本信息
- 批准号:8794268
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdministratorAdoptionBiologyCharacteristicsClinicalCollaborationsCollectionCommunitiesComputer softwareComputerized Medical RecordConsensusDataData SetDevelopmentEcosystemEnvironmentFosteringFundingGenomicsGoalsHealthHealth ServicesHealth Services ResearchIndividualInformaticsLabelMedicalMedical RecordsMethodsModelingNatural Language ProcessingPatient CarePatientsPlayProcessProductionPublic Health InformaticsRecordsResearchResearch InfrastructureResearch PersonnelResearch Project GrantsRoleScienceSemanticsSolutionsSystemTextbasebiomedical resourcecollaborative environmentdata modelingdesigninformation processinginteroperabilitymeetingsprototyperesearch and developmenttool
项目摘要
DESCRIPTION (provided by applicant):
The VA has invested hugely in electronic medical records and has achieved a nationwide system that collects medical information from all patients. Currently, the textual information in the medical records is inaccessible to all but a small number of researchers. In order to obtain the highest value from this existing system, administrators and practitioners need to be able to access the textual information they need. It is our responsibility to get the most benefit from thi resource for biomedical and patient care. Clinical natural language processing (NLP) is an important part the solution. The value of NLP has been recognized in the biomedical domain. Evidence of this includes funding for the following national initiatives focused on clinical NLP: Integrating Biology and the Bedside (i2b2), Consortium for Health Informatics Research (CHIR), VA Informatics and Computing Infrastructure (VINCI), Strategic Health IT Advanced Research Projects (SHARP), and electronic Medical Records & Genomics (eMERGE). On the one hand, these efforts testify to the demand for NLP research. They have produced new NLP tools, created annotated datasets, developed common data models, shared semantic labels, and even piloted a prototype software ecosystem. On the other hand, the general consensus in the informatics community is that processing and utilizing textual data remains challenging due to lack of interoperability and collaboration. Unless the pace of research and development is accelerated in clinical NLP, we cannot meet the increasing NLP demand originated from the biomedical and health services research community. Although synergistic development has the promise of advancing the science of NLP and accelerating the pace of NLP tool production, there lacks a vibrant collaborative environment attracting participation of a significant number of
clinical NLP developers and researchers. Within the VA CHIR and VINCI efforts, we have created a prototype NLP ecosystem called V3NLP that supports the interoperability and integration of heterogeneous tools into VA research and operational initiatives. The environment needed to foster collaboration and a critical mass of users, however, is lacking. In the proposed project, we will study the needs of existing and potential users of the V3NLP ecosystem to increase its utility and ease of adoption and to facilitate collaboration. The ultimate goal of an
NLP ecosystem is to produce new and more accurate NLP methods for clinical text. This requires a good understanding of the characteristics of various types of clinical text and the strengths and weakness of existing methods. Because most clinical NLP solutions have been driven by individual use cases and note collections, the resultant solutions are optimized for the characteristics of the specific NLP tasks and text corpora analyzed. Since there are numerous tasks and corpora, clinical NLP solutions tend to be difficult to re-use, especially by different developers. To remedy this, we will research characteristics of a very large and heterogeneous collection of VA text records to understand and model sublanguages in VA clinical notes. This systematic and comprehensive sublanguage analysis will play a critical role in the proposed ecosystem. It will guide the development of new clinical NLP methods as well as the customization of existing solutions. Our general goal is to accelerate clinical NLP research and development. The specific aims are as follows: (1) Collect and analyze the needs of NLP developers, health informatics researchers and health services researchers to inform the design of a collaborative NLP ecosystem that will facilitate development of more accurate methods. (2) Design and implement a clinical NLP ecosystem that fosters collaboration and accelerates research and adoption of accurate and generalizable NLP methods. (3) Conduct a comprehensive sublanguage analysis to guide the creation of adaptable NLP tools and methods based on VA text notes to support text processing and information extraction across multiple clinical domains.
描述(由申请人提供):
退伍军人管理局在电子病历方面投入了大量资金,并实现了一个收集所有患者医疗信息的全国性系统。目前,除了少数研究人员外,所有研究人员都无法访问病历中的文本信息。为了从这一现有系统中获得最高价值,管理员和从业人员需要能够访问他们需要的文本信息。从这一生物医学和患者护理资源中获得最大利益是我们的责任。临床自然语言处理(NLP)是解决这一问题的重要组成部分。NLP在生物医学领域的价值已经被认识到。这方面的证据包括为以下侧重于临床NLP的国家倡议提供资金:整合生物学和床边(I2b2)、健康信息学研究联盟(CHIR)、退伍军人信息学和计算基础设施(VINCI)、战略健康IT高级研究项目(SHARP)和电子医疗记录和基因组学(Emerge)。一方面,这些努力证明了对自然语言处理研究的需求。他们生产了新的NLP工具,创建了带注释的数据集,开发了通用数据模型,共享了语义标签,甚至试验了一个原型软件生态系统。另一方面,信息界的普遍共识是,由于缺乏互操作性和协作,处理和利用文本数据仍然具有挑战性。除非加快临床NLP的研究和开发步伐,否则我们无法满足生物医学和卫生服务研究界日益增长的NLP需求。虽然协同开发有望推进自然语言处理的科学性,加快自然语言处理工具生产的步伐,但缺乏一个充满活力的协作环境,吸引了大量
临床NLP开发人员和研究人员。在退伍军人事务部和芬奇的努力下,我们已经创建了一个名为V3NLP的NLP原型生态系统,该生态系统支持不同工具的互操作性,并将其集成到退伍军人管理局的研究和运营计划中。然而,缺乏促进协作和关键用户数量所需的环境。在拟议的项目中,我们将研究V3NLP生态系统的现有和潜在用户的需求,以增加其效用和易用性,并促进协作。的最终目标是
NLP生态圈是为临床文本产生新的、更准确的NLP方法。这需要很好地了解各类临床文本的特点以及现有方法的优缺点。由于大多数临床NLP解决方案都是由单独的用例和笔记集合驱动的,因此生成的解决方案针对特定NLP任务的特征和分析的文本语料库进行了优化。由于有许多任务和语料库,临床NLP解决方案往往很难重复使用,特别是不同的开发人员。为了纠正这一点,我们将研究非常大的和不同种类的VA文本记录的特征,以理解VA临床记录中的子语言并对其进行建模。这种系统和全面的亚语言分析将在拟议的生态系统中发挥关键作用。它将指导新的临床NLP方法的开发以及现有解决方案的定制。我们的总体目标是加快临床NLP的研究和开发。具体目标如下:(1)收集和分析NLP开发人员、卫生信息学研究人员和卫生服务研究人员的需求,为设计一个协作的NLP生态系统提供信息,这将有助于开发更准确的方法。(2)设计和实施临床NLP生态系统,促进协作,加速准确和可推广的NLP方法的研究和采用。(3)进行全面的子语言分析,以指导基于VA文本注释的适应性NLP工具和方法的创建,以支持跨多个临床领域的文本处理和信息提取。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QING ZENG其他文献
QING ZENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QING ZENG', 18)}}的其他基金
Consistency of Uses of ICD Codes for Retrospective Data Analysis
回顾性数据分析中 ICD 代码使用的一致性
- 批准号:
10187290 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Protect Patient Safety Through Herb-Drug-Disease Interaction Detection and Alert
通过草药-药物-疾病相互作用检测和警报保护患者安全
- 批准号:
9223149 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Graphics to Enhance Health Education Materials for Underrepresented Populations
用于增强代表性不足人群健康教育材料的图形
- 批准号:
8725230 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Cognitive Support for Shared Decision Making Using Veterans Like Me
使用像我这样的退伍军人为共同决策提供认知支持
- 批准号:
8596326 - 财政年份:2013
- 资助金额:
-- - 项目类别:
A VHA NLP Software Ecosystem for Collaborative Development and Integration
用于协作开发和集成的 VHA NLP 软件生态系统
- 批准号:
8488627 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Protect Patient Safety Through Herb-Drug-Disease Interaction Detection and Alert
通过草药-药物-疾病相互作用检测和警报保护患者安全
- 批准号:
8297321 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Protect Patient Safety Through Herb-Drug-Disease Interaction Detection and Alert
通过草药-药物-疾病相互作用检测和警报保护患者安全
- 批准号:
8518242 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant