A Translational Bioinformatics Approach in the Drug Interaction Research
药物相互作用研究中的转化生物信息学方法
基本信息
- 批准号:9085317
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAntimalarialsAntipsychotic AgentsApplications GrantsBasic ScienceBioinformaticsBiologicalBiological AssayCYP3A4 geneCellsChloroquineClinicalClinical ResearchCollaborationsComputerized Medical RecordConfounding Factors (Epidemiology)DataData AnalysesData SetDatabasesDetectionDisciplineDrug ExposureDrug InteractionsDrug KineticsEmergency department visitEpidemiologyGenomicsGoalsHealthHealthcare SystemsHospitalizationIn VitroIncidenceIndividualLaboratory StudyMedical RecordsMetabolismMethodologyMethodsMiningModelingMolecularMuscle WeaknessMyopathyOutcomePathway interactionsPatientsPerformancePharmaceutical PreparationsPharmacologyPolypharmacyProteinsPublic HealthReactionRecombinantsReportingResearchResearch DesignRiskSchemeScientistScoring MethodSumSystemTestingTranslational ResearchTranslationsUnited StatesWorkbasecase controldata miningdesigndrug efficacydrug metabolismdrug testingepidemiology studyinsightnovelnovel therapeuticspatient populationpopulation basedquetiapineresearch studyscreeningsimulationstatisticssurveillance studytheoriestranslational approachunpublished worksuptake
项目摘要
DESCRIPTION (provided by applicant): Drug-drug interactions (DDIs) represent an increasing threat to public health, causing an estimated 195,000 annual hospitalizations and 74,000 emergency room visits. Current DDI research investigates different aspects of drug interactions, both computationally and experimentally. Although these approaches are complementary, they are usually conducted independently and without coordination. In vitro pharmacology experiments use intact cells, microsomal protein fractions, or recombinant systems to investigate drug interaction mechanisms. Pharmaco-epidemiology (in populo) uses a population-based approach and large electronic medical record (EMR) databases to investigate the contribution of a DDI to drug efficacy and adverse drug reactions (ADRs). In this grant proposal, novel bioinformatics data mining approaches will be developed to mine DDIs from EMR, and they will be further validated in vitro. The following are specific aims. In Aim 1, a nove dynamic nested case-control design is proposed to detect of either single drug or DDI effects on the ADR. A new empirical Bayes method is developed to test the drug and DDI-induced ADRs, and it will estimate false discovery rates. In Aim 2, a novel generalized propensity score method is proposed to analyze high dimensional medication data. This method possesses more power in identifying ADR effects from highly correlated drugs, than the conventional propensity score method. Aim 3, using the univariate and multivariate data mining methods developed in aims 1 and 2, we will detect novel drugs and DDIs that increase the risk of one well-defined ADR, myopathy, using the EMR database and high-throughput enzymatic screening assays. In our preliminary work, using our proposed methodology and a 2.2 million record EMR database, six myopathy risk DDIs were identified (p < 5�10-6), including a newly discovered interaction between quetiapine and chloroquine. If taken together, they increase myopathy risk 2.17-fold higher than their added individual risks due to quetiapine inhibition of chloroquine metabolism by the CYP3A4 pathway and blockage of the OATP1B1/1B3 transmembrane transporter. Thus, the successful execution of this work will demonstrate a complete translational scope, starting with EMR-based DDI discovery, and ending with the elucidation of molecular DDI mechanisms through pharmacological experiments. Together, these preliminary data demonstrate that our translational approach is a highly feasible and extremely powerful method for clinical DDI research, likely to yield valuable insight into this emerging public health peril.
描述(由申请人提供):药物间相互作用(DDI)对公共卫生构成日益严重的威胁,估计每年造成195,000例住院和74,000例急诊。目前DDI研究调查药物相互作用的不同方面,包括计算和实验。虽然这些方法是相辅相成的,但它们通常是独立进行的,没有协调。体外药理学实验使用完整细胞、微粒体蛋白组分或重组系统来研究药物相互作用机制。药物流行病学(流行病学)使用基于人群的方法和大型电子病历(EMR)数据库来研究DDI对药物疗效和药物不良反应(ADR)的贡献。在这项拨款提案中,将开发新的生物信息学数据挖掘方法,从EMR中挖掘DDI,并将在体外进一步验证。以下是具体目标。目的1提出了一种新的动态巢式病例对照设计,以检测单药或DDI对ADR的影响。提出了一种新的经验贝叶斯方法来检验药物和DDI引起的不良反应,并估计错误发现率。在目标2中,提出了一种新的广义倾向得分方法来分析高维药物数据。与传统的倾向评分法相比,该方法在识别高度相关药物的不良反应方面具有更强的能力。目标3,使用目标1和2中开发的单变量和多变量数据挖掘方法,我们将使用EMR数据库和高通量酶筛选试验检测增加一种明确定义的ADR(肌病)风险的新药和DDI。在我们的初步工作中,使用我们提出的方法和220万记录的EMR数据库,确定了6个肌病风险DDI(p < 5 - 10-6),包括新发现的奎替鲁和氯喹之间的相互作用。如果合并使用,由于奎替鲁肽通过CYP 3A 4途径抑制氯喹代谢和阻断OATP 1B 1/1B 3跨膜转运蛋白,它们增加的肌病风险比其增加的个体风险高2.17倍。因此,这项工作的成功执行将展示一个完整的翻译范围,从基于EMR的DDI发现开始,并通过药理学实验阐明分子DDI机制结束。总之,这些初步数据表明,我们的翻译方法是一种非常可行和非常强大的临床DDI研究方法,可能会对这种新兴的公共卫生危险产生有价值的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lang Li其他文献
Lang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lang Li', 18)}}的其他基金
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10584124 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10487575 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10676275 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10309155 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
An informatics bridge over the valley of death for cancer Phase I trials of drug-combination therapies
跨越癌症死亡之谷的信息学桥梁 药物组合疗法的 I 期试验
- 批准号:
10494095 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
An informatics bridge over the valley of death for cancer Phase I trials of drug-combination therapies
跨越癌症死亡之谷的信息学桥梁 药物组合疗法的 I 期试验
- 批准号:
10305083 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
A Translational Bioinformatics Approach in the Drug Interaction Research
药物相互作用研究中的转化生物信息学方法
- 批准号:
8761156 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Research Grant