Pancreatic Islets Dynamics Regulating Glucagon Secretion
胰岛动态调节胰高血糖素分泌
基本信息
- 批准号:9116182
- 负责人:
- 金额:$ 33.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Alpha CellArchitectureBehaviorBeta CellBiosensorBlood GlucoseCell CommunicationCell physiologyCell secretionCellsCommunicationD CellsDevelopmentDiabetes MellitusElectrophysiology (science)Eph Family ReceptorsEphrinsExocytosisGap JunctionsGeneticGlucagonGlucoseGoalsHealthHormonesHumanHyperglycemiaHypoglycemiaImageIn VitroInsulinIslet CellIslets of LangerhansKnowledgeLabelLeadLifeMeasurementMeasuresMediatingMediator of activation proteinMetabolicMethodsMicrofluidicsMolecularMolecular BiologyMusParacrine CommunicationPathogenesisPathologyPathway interactionsPatternPhenotypePhysiologicalPlayPreventionRNA InterferenceRegulationResearchRoleSignal PathwaySignal TransductionSomatostatinSomatostatin ReceptorTestingTherapeuticVariantVirus Diseasesblood glucose regulationcell growth regulationcell typediabeticdiabetic patientin vivoinsulin secretionisletnew therapeutic targetnovelpancreatic juiceparacrinepreventprotein expressionquantitative imagingresearch studyresponsesuccesstherapeutic targettranscriptometreatment strategytype I and type II diabetes
项目摘要
DESCRIPTION (provided by applicant): The islet of Langerhans plays an important role in blood glucose homeostasis through regulated hormone secretion. The therapeutic success of insulin has led most islet research to focus on �-cells, although other islet hormones including glucagon (secreted by �-cells) and somatostatin (secreted by �-cells) have important physiological actions. Glucagon plays a critical role in the pathology of diabetes, but the mechanisms that regulate glucagon secretion remain poorly understood. Interactions with other islet cell types are likely involved in glucose-inhibition of glucagon secretion (GIGS), since inhibition is lost in vivo after �-cells are destroyed in Type I or fail in advanced Type 2 diabete. GIGS is also lost in vitro when �-cells are isolated from the islet. The composition, architecture,
and protein expression patterns of islet cell types vary between species, but the amplitude and temporal pattern of GIGS is nearly identical regardless of species. Thus, we propose to leverage species similarities towards uncovering molecular mechanisms underlying GIGS. The secretory product of �-cells, somatostatin, is a promising molecular mediator of this interaction because GIGS is lost in islets with a genetic deletion of somatostatin, and the somatostatin receptor subtype 2 dominates its signaling in both human and mouse �-cells. However, somatostatin alone does not inhibit glucagon secretion from isolated �-cells, which suggests that somatostatin must combine with other cell-cell interactions in the islet for proper GIGS. One potential juxtacrine signaling mechanism that can inhibit exocytosis is ephrinA-EphA forward signaling, and transcriptome studies show that EphA4 is the only Eph receptor expressed in both human and mouse �-cells. We have shown that islet glucagon secretion is suppressed in response to glucose even though �-cell Ca2+ levels are elevated. This effect parallels that seen in islets lacking �-cell gap junctions, where insulin secretion can be inhibited by juxtacrine communication mediated by ephrinA-EphA signaling even when Ca2+ levels are elevated. Since the �-cell contains only a single Eph receptor sub-type and it is closely related to the �-cell, we speculate that a similar mechanism may play a role in GIGS from islet �-cells. Thus, we hypothesize that GIGS requires both paracrine signaling by somatostatin from �-cells in the islet and juxtacrine communication from �-cells via EphA4 forward signaling. This hypothesis will be tested via three specific aims: 1) determine the role of juxtacrine EphA4 forward signaling on islet glucagon secretion; 2) determine the role of somatostatin-mediated paracrine signaling combined with EphA juxtacrine signaling on GIGS from �-cells in intact islets; 3) determine the roles of these paracrine and juxtacrine signaling pathways on GIGS from human islets of healthy and Type II diabetic donors. These experimental results will further our understanding of �-cell function in mouse and human islets. This mechanistic information will provide novel therapeutic targets for the regulation of glucagon, which is an emerging opportunity for preventing hypoglycemic episodes and normalizing blood glucose in diabetic patients.
描述(由申请人提供):胰岛通过调节激素分泌在血糖稳态中发挥重要作用。胰岛素的治疗成功导致大多数胰岛研究集中在β细胞上,尽管其他胰岛激素包括胰高血糖素(由β细胞分泌)和生长抑素(由β细胞分泌)具有重要的生理作用。胰高血糖素在糖尿病的病理学中起着关键作用,但调节胰高血糖素分泌的机制仍然知之甚少。与其他胰岛细胞类型的相互作用可能涉及胰高血糖素分泌的葡萄糖抑制(GIGS),因为在I型糖尿病中β细胞被破坏或在晚期2型糖尿病中失败后,体内抑制作用丧失。当β细胞从胰岛中分离时,GIGS也在体外丢失。它的构图,建筑,
胰岛细胞类型的蛋白质表达模式在种属之间不同,但GIGS的幅度和时间模式几乎是相同的,无论是种属。因此,我们建议利用物种的相似性,以揭示潜在的GIGS的分子机制。β-细胞的分泌产物生长抑素是这种相互作用的有希望的分子介质,因为GIGS在具有生长抑素基因缺失的胰岛中丢失,并且生长抑素受体亚型2在人类和小鼠β-细胞中主导其信号传导。然而,单独的生长抑素不能抑制分离的β-细胞分泌胰高血糖素,这表明生长抑素必须与胰岛中的其他细胞-细胞相互作用联合收割机才能产生适当的GIGS。一种可以抑制胞吐作用的潜在的Ephacrine信号传导机制是ephrinA-EphA正向信号传导,转录组研究表明EphA4是人类和小鼠β细胞中表达的唯一Eph受体。我们已经证明,即使β细胞Ca2+水平升高,胰岛胰高血糖素分泌也会对葡萄糖产生抑制作用。这种效应与在缺乏β-细胞间隙连接的胰岛中观察到的相似,其中即使当Ca2+水平升高时,胰岛素分泌也可以被ephrinA-EphA信号传导介导的β-acrine通讯抑制。由于胰岛β细胞仅含有单一的Eph受体亚型,并且与胰岛β细胞密切相关,我们推测类似的机制可能在胰岛β细胞的GIGS中起作用。因此,我们假设GIGS既需要来自胰岛β细胞的生长抑素的旁分泌信号,也需要来自β细胞的生长抑素通过EphA4前向信号传递。这一假设将通过三个特定的目的进行测试:1)确定EphA 4前向信号传导对胰岛胰高血糖素分泌的作用; 2)确定生长抑素介导的旁分泌信号传导与EphA旁分泌信号传导组合对来自完整胰岛中β细胞的GIGS的作用; 3)确定这些旁分泌和旁分泌信号传导途径对来自健康和II型糖尿病供体的人类胰岛的GIGS的作用。这些实验结果将进一步加深我们对小鼠和人类胰岛中β细胞功能的理解。这种机制信息将为胰高血糖素的调节提供新的治疗靶点,这是预防糖尿病患者低血糖发作和血糖正常化的新机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David W Piston其他文献
Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice
- DOI:
10.1186/1472-6823-5-9 - 发表时间:
2005-12-08 - 期刊:
- 影响因子:3.300
- 作者:
Subhadra C Gunawardana;W Steven Head;David W Piston - 通讯作者:
David W Piston
David W Piston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David W Piston', 18)}}的其他基金
Nikon Confocal Microscope for Shared Biomedical Research
用于共享生物医学研究的尼康共焦显微镜
- 批准号:
10413403 - 财政年份:2022
- 资助金额:
$ 33.17万 - 项目类别:
High Sensitivity sCMOS Camera System for Transmission Electron Microscope
用于透射电子显微镜的高灵敏度 sCMOS 相机系统
- 批准号:
10414332 - 财政年份:2022
- 资助金额:
$ 33.17万 - 项目类别:
Zeiss LSM 980 Airyscan 2 Microscope for Shared Mental Health Research
用于共享心理健康研究的蔡司 LSM 980 Airyscan 2 显微镜
- 批准号:
10282117 - 财政年份:2021
- 资助金额:
$ 33.17万 - 项目类别:
Regulation of Glucagon Secretion from Pancreatic Islets
胰岛胰高血糖素分泌的调节
- 批准号:
10675668 - 财政年份:2020
- 资助金额:
$ 33.17万 - 项目类别:
Regulation of Glucagon Secretion from Pancreatic Islets
胰岛胰高血糖素分泌的调节
- 批准号:
10468865 - 财政年份:2020
- 资助金额:
$ 33.17万 - 项目类别:
Regulation of Glucagon Secretion from Pancreatic Islets
胰岛胰高血糖素分泌的调节
- 批准号:
10264101 - 财政年份:2020
- 资助金额:
$ 33.17万 - 项目类别:
Multi-dimensional Dynamics of Pancreatic Islet Cells Measured by Image Mapping diSPIM
通过图像映射 diSPIM 测量胰岛细胞的多维动力学
- 批准号:
10197901 - 财政年份:2018
- 资助金额:
$ 33.17万 - 项目类别:
Pancreatic Islets Dynamics Regulating Glucagon Secretion
胰岛动态调节胰高血糖素分泌
- 批准号:
9068608 - 财政年份:2015
- 资助金额:
$ 33.17万 - 项目类别:
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 33.17万 - 项目类别:
Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 33.17万 - 项目类别:
Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
- 批准号:
10662730 - 财政年份:2023
- 资助金额:
$ 33.17万 - 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
- 批准号:
1940647 - 财政年份:2020
- 资助金额:
$ 33.17万 - 项目类别:
Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
- 批准号:
19K11911 - 财政年份:2019
- 资助金额:
$ 33.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
- 批准号:
1453536 - 财政年份:2015
- 资助金额:
$ 33.17万 - 项目类别:
Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
- 批准号:
279491470 - 财政年份:2015
- 资助金额:
$ 33.17万 - 项目类别:
Research Grants