Functional Properties Of Extracellular Matrix

细胞外基质的功能特性

基本信息

项目摘要

Better understanding the mechanisms that govern cartilage behavior and function is essential to predict its biomechanical properties, particularly its load-bearing and lubricating abilities. Such understanding is also a prerequisite for the success of tissue engineering and regenerative medicine strategies to grow, repair, and reintegrate cartilage. The functional properties of cartilage are affected by biochemical and microstructural changes occurring in development, disease, degeneration, and aging. To study cartilage physical properties (e.g., osmotic swelling properties and hydration) an array of techniques is required that probe not only a wide range of length scales but also statistically representative volumes of the sample. Controlled hydration provides a direct means of determining functional properties of cartilage and of other tissues. Specifically, we have used controlled hydration of cartilage to measure physical/chemical properties of the collagen network and of the proteoglycans (PG) independently within the extracellular matrix. This approach entailed modeling the cartilage tissue matrix as a composite material consisting of two distinct phases: a collagen network and a concentrated PG solution trapped within it. In pilot studies, we used this approach to determine "pressure-volume" curves for the collagen network and PG phases in native and in trypsin-treated normal human cartilage specimen, as well as in cartilage specimen from osteoarthritic (OA) joints. In both normal and trypsin-treated specimens, collagen network stiffness appeared unchanged, whereas in the OA specimen, collagen network stiffness decreased. Our findings highlighted the role of the collagen network in limiting normal cartilage hydration, and in ensuring a high PG concentration, and thus, swelling pressure within the matrix, both of which are essential for effective load bearing in cartilage and joint lubrication, but are lost in OA. A shortcoming of this approach was that it required excised tissue slices to obtain these osmotic titration curves. This lead to long equilibration times requiring several person-days to study a single cartilage specimen, making this approach unsuitable for routine pathological analysis or in tissue engineering applications. Subsequently, we designed and built a new tissue micro-osmometer to perform these experiments practically and rapidly (US Patent No. 7,380,477). This instrument can measure minute amounts of water absorbed by small tissue samples (< 1 microgram) as a function of the equilibrium activity (pressure) of the surrounding water vapor. A quartz crystal sensitively and precisely detects the water uptake of the tissue specimen attached to its surface. Varying the equilibrium vapor pressure surrounding the specimen induces controlled changes in the osmotic pressure of the tissue layer. We used the tissue micro-osmometer to obtain a profile of the osmotic compressibility or stiffness of cartilage specimens as a function of depth from the articular surface to the bone interface. The apparatus also allows us to assess the mechanical integrity of developing tissues and osmotic compatibility of tissue-engineered cartilage (or ECM), which is essential for improving integration and viability following implantation in regenerative medicine applications. We have developed an experimental procedure for mapping the local elastic properties of cartilage using the atomic force microscope (AFM). Many impediments that have previously hindered the use of AFM in high-throughput analysis of inhomogeneous samples, particularly biological tissues, have been addressed. The technique utilizes the precise scanning capabilities of AFM to generate large volumes of compliance data from which we extract the relevant elastic properties. We mapped the osmotic modulus of bovine cartilage samples by combining tissue micro-osmometry with force-deformation measurements made by the AFM. Knowledge of the local osmotic properties of cartilage is particularly important since the osmotic modulus defines the compressive resistance to external load. We found that the water retention is stronger in the upper and deep zones of cartilage, where collagen fibers are orderly organized, than in the middle zone where they are randomly arranged. We have constructed the elastic and osmotic modulus maps for the different layers. The latter that is a combination of the elastic and swelling properties, exhibits much stronger spatial variation reflecting the highly heterogeneous character of the tissue. We correlated the mechanical measurements with observations made by MRI imaging on the same cartilage specimens. A major objective of tissue engineering is to mimic the ECM environment. However, the complexity of interactions between ECM and cells makes it difficult to design materials for regenerative medicine applications. Previous studies have indicated that the chemical structure of the scaffold is critical. Molecular factors (e.g., hydrophilic or hydrophobic character of the scaffold, stiffness, charge density of the polymer) significantly influence cell adhesion, spreading and growth. In collaboration with researchers at the Carnegie Mellon University we developed novel nanostructured hydrogels, which have potential as an artificial ECM, which can act as a macroscopic scaffold for tissue regeneration. Experimental results obtained by macroscopic (osmotic swelling pressure measurements) and microscopic techniques (SANS, SAXS, DLS) aimed a quantifying the interactions between the main macromolecular components of the ECM, yield insights both into the properties of aggrecan assemblies at a supramolecular level and into the mechanism of load bearing of cartilage. Measurements made on aggrecan, HA, and aggrecan/HA solutions indicate that the osmotic pressure, molecular organization, and dynamic response of PG assemblies are governed by the bottlebrush-shaped aggrecan molecule. Osmotic pressure measurements allow us to quantify the contributions of individual components of ECM (e.g., aggrecan, HA, and collagen) to the total swelling pressure. Our osmotic pressure measurements on aggrecan/HA systems showed evidence of self-assembly of the bottlebrush shaped aggrecan subunits into microgel-like assemblies. Complexation with HA enhances aggrecan assembly. In the physiological concentration range the osmotic modulus of the aggrecan/HA complex exceeds that of random assemblies of aggrecan bottlebrushes, confirming that the aggrecan/HA complex increases the load bearing ability of cartilage. Both osmotic pressure measurements and SANS indicate weak interactions between the aggrecan bottlebrushes and collagen fibers. Recently. we have developed a multiscale approach to study ECM in which quantitative MR imaging is combined with chemical composition mapping (HDIR spectroscopy) and high resolution mechanical measurements made by the AFM. Our pilot study made on 2.5 year old bovine cartilage yield consistent results between the NMR parameters, the chemical composition and structure of the ECM, and its mechanical properties. HDIR validates the use of MR imaging of tissue composition. AFM bridges MR and HDIR by establishing relationships between chemical composition, structure and mechanical tissue function. This research was supported by the NICHD DIR Director's Award. Collectively, these quantitative physical/chemical approaches are helping us get closer to understanding the basis of ECM's functional properties in general, and cartilage in particular, their changes in development, as well as their loss in disease and degeneration.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER J. BASSER其他文献

PETER J. BASSER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER J. BASSER', 18)}}的其他基金

Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
  • 批准号:
    10458018
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
  • 批准号:
    10532483
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
  • 批准号:
    10226118
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
  • 批准号:
    9789878
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Connectome 2.0:开发下一代人体 MRI 扫描仪,用于桥接微观、中观和宏观连接组研究
  • 批准号:
    10005356
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Functional Properties of Extracellular Matrix
细胞外基质的功能特性
  • 批准号:
    6107994
  • 财政年份:
  • 资助金额:
    $ 39.65万
  • 项目类别:
Functional Properties of Extracellular Matrix
细胞外基质的功能特性
  • 批准号:
    6432511
  • 财政年份:
  • 资助金额:
    $ 39.65万
  • 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft T
大脑和其他软 T 中水扩散的成像
  • 批准号:
    6991174
  • 财政年份:
  • 资助金额:
    $ 39.65万
  • 项目类别:
Physical-chemical Aspects Of Cell And Tissue Excitabilit
细胞和组织兴奋性的物理化学方面
  • 批准号:
    6677330
  • 财政年份:
  • 资助金额:
    $ 39.65万
  • 项目类别:
Imaging Water Diffusion in the Brain and in Other Soft Tissues
大脑和其他软组织中的水扩散成像
  • 批准号:
    8736807
  • 财政年份:
  • 资助金额:
    $ 39.65万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 39.65万
  • 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
  • 批准号:
    400097
  • 财政年份:
    2019
  • 资助金额:
    $ 39.65万
  • 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
  • 批准号:
    19K09017
  • 财政年份:
    2019
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
  • 批准号:
    18K09531
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
  • 批准号:
    9766994
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 39.65万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 39.65万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 39.65万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9925164
  • 财政年份:
    2016
  • 资助金额:
    $ 39.65万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9345997
  • 财政年份:
    2016
  • 资助金额:
    $ 39.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了