The Characterization of the Skeletogenic Stem Cells that Contribute to Post Natal Axial Skeletal Tissue Repair

有助于产后中轴骨骼组织修复的成骨干细胞的表征

基本信息

  • 批准号:
    9109739
  • 负责人:
  • 金额:
    $ 9.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-06 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Candidate: Dr. Bragdon's training has been multidisciplinary encompassing biochemistry, molecular biology, and biophysics. During her research career she developed an interest in skeletal biology which she furthered by joining Dr. Gerstenfeld's lab and moving these interests into in vivo bone repair and regeneration models. Dr. Bragdon's long term goal is to become an independent researcher in an academic environment, pursuing basic and applied research in skeletal tissue biology to identify mechanisms that can be exploited as treatment for heterotrophic ossification, to advance current bone grafting materials, and to improve bone regeneration. In order to obtain these goals a career development plan has been developed by Drs. Gerstenfeld and Morgan, along with a co-mentor committee who will assist Dr. Bragdon as she transitions to an independent career. The mentor committee consists of both basic scientists and clinicians who will be able to provide clinical perspectives, interdisciplinary knowledge base, and independent advice. During this time additional research skills will be learned, specifically Fluorescence Activated Cell Sorting and microarray analysis. Equally balanced with learning of new technical skills will be professional development which is based on the National Postdoctoral Association Core Competencies and includes: communication, leadership and management, discipline-specific conceptual knowledge, professional skills, and responsible conduct of research. Resources available at Boston University will greatly aid in the career development of Dr. Bragdon. She will have access to core facilities run by faculty and staff members for technical advice, professional development through the Office of Professional development and Post-doctoral Affairs, BU Broadening Experiences in Scientific Training (BEST), Women in Science and Engineering, and Women in Networks. Research: Fractures are one of the most traumatic injuries that can occur in humans with 8 to 10 million fractures occurring annually which approximately 10% results in delayed or impaired healing. Repair is dependent upon the recruitment of mesenchymal stem cells (MSCs) to the injury site followed by a cascade of events resulting in the formation of cartilage and bone. A similar event can also occur in soft tissue due to trauma, burns, and total hip replacements resulting in boney tissue called ectopic or heterotopic ossification (HO). Multiple stem cell populations from the bone surface and muscle have been suggested to be involved however it is unclear as to the specific population of skeletogenic stem cells that are recruited or their location. Based on previous data the hypothesis of this proposal is that there i a "universal MSC" with in the axial limb tissues that contributes to injury induced bone formation. The aims of this proposal will 1) determine the stem cell contribution from the bone surface and muscle to the HO and identify whether the stem cell populations are similar, 2) determine the impact of muscle trauma has on the populations of recruited stem cells, and 3) determine the transcriptional machinery of these stem cell populations. In this proposal demineralized bone matrix will be implanted into inducible transgenic reporter mice models to induce ectopic bone formation. The mouse models will allow for the specific labeling and capturing of the different populations of cells known to induce during fracture and ectopic bone formation.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beth Christie Bragdon其他文献

Beth Christie Bragdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beth Christie Bragdon', 18)}}的其他基金

The Characterization of the Skeletogenic Stem Cells that Contribute to Post Natal Axial Skeletal Tissue Repair
有助于产后中轴骨骼组织修复的成骨干细胞的表征
  • 批准号:
    9677711
  • 财政年份:
    2018
  • 资助金额:
    $ 9.02万
  • 项目类别:
The Characterization of the Skeletogenic Stem Cells that Contribute to Post Natal Axial Skeletal Tissue Repair
有助于产后中轴骨骼组织修复的成骨干细胞的表征
  • 批准号:
    9288127
  • 财政年份:
    2016
  • 资助金额:
    $ 9.02万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 9.02万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 9.02万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 9.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了