Parameterized complexity in computational biology and cognitive psychology
计算生物学和认知心理学中的参数化复杂性
基本信息
- 批准号:249898-2006
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many application areas, such as Computational Biology or Bioinformatics, there is a tremendous need for practical algorithms for NP-hard problems (i.e., problems where no polynomial time algorithm is known and most likely no such algorithm exists). Several approaches to tackle NP-hard problems exist including approximation algorithms and fixed-parameter-tractable algorithms. My expertise is in the latter one, which belongs to the area of Parameterized Complexity. We distinguish between parameterized problems which are fixed-parameter tractable and fixed-parameter intractable (i.e., hard for the class W[1]). For parameterized problems that are fixed-parameter tractable, there exist algorithms that have a polynomial-time behaviour for small parameters, that is such an algorithm may be of exponential time in the parameter, but of polynomial time in the non-parameterized input size. In Bioinformatics, I am especially interested in (1) analyzing the relationship between biological sequence data and (2) modeling the evolution of a genome. Other important applications I am investigating are in Cognitive Psychology, that is, the modeling of cognitive theories in general and understanding of human problem solving and decision making strategies in particular. Finally, my principle objectives are to design tractable algorithms for NP-hard problems and to extend the parameterized tractable algorithms design toolkit with new techniques (e.g., kernelization); the modeling of and algorithm design for genome rearrangement problems for given biological sequence data; the modeling of cognitive theories and their validation; and the investigation of human problem solving strategies when confronted with NP-hard problems.
在许多应用领域,例如计算生物学或生物信息学,存在对用于NP难问题(即,多项式时间算法未知并且很可能不存在这种算法的问题)。解决NP难问题的几种方法包括近似算法和固定参数易处理算法。我的专长是后者,属于参数化复杂性领域。我们区分固定参数易处理的参数化问题和固定参数难处理的参数化问题(即,(1)对类W[1]。对于固定参数易处理的参数化问题,存在对于小参数具有多项式时间行为的算法,即这样的算法在参数中可以是指数时间,但在非参数化输入大小中是多项式时间。在生物信息学方面,我特别感兴趣的是(1)分析生物序列数据之间的关系,(2)模拟基因组的进化。我正在研究的其他重要应用是认知心理学,即一般认知理论的建模,特别是对人类解决问题和决策策略的理解。最后,我的主要目标是为NP难问题设计易于处理的算法,并使用新技术(例如,kernelization);针对给定生物序列数据的基因组重排问题的建模和算法设计;认知理论的建模及其验证;以及当面临NP难题时人类问题解决策略的调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stege, Ulrike其他文献
Suffix trees for inputs larger than main memory
- DOI:
10.1016/j.is.2010.11.001 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:3.7
- 作者:
Barsky, Marina;Stege, Ulrike;Thomo, Alex - 通讯作者:
Thomo, Alex
Stege, Ulrike的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stege, Ulrike', 18)}}的其他基金
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
e-Ink font design for quilla eWriter
quilla eWriter 的电子墨水字体设计
- 批准号:
522098-2018 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Intelligent automatic music curator and recommender system
智能自动音乐策展和推荐系统
- 批准号:
516172-2017 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Engage Plus Grants Program
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Content-aware music recommender system using emotion recognition
使用情感识别的内容感知音乐推荐系统
- 批准号:
505519-2016 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
Computational Problems & Cognitive Functions: Modeling, Characterizations, and Solutions
计算问题
- 批准号:
RGPIN-2016-05505 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Computational problems & tractable algorithms: Bridging the gap between problem definitions and solutions
计算问题
- 批准号:
249898-2011 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Travel: NSF Student Travel Grant for 2023 Conference on Computational Complexity
旅行:2023 年计算复杂性会议 NSF 学生旅行补助金
- 批准号:
2326701 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
- 批准号:
2302375 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
- 批准号:
RGPIN-2019-05060 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual