Inverse problems in seismic ray theory: traveltime and polarization inverse
地震线理论中的反演问题:走时和极化反演
基本信息
- 批准号:238416-2007
- 负责人:
- 金额:$ 1.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research deals with the inverse problem of seismic ray theory rooted in the theory of elasticity, and consisting of obtaining parameters characterizing the subsurface using seismological measurements. In the context of seismic ray theory, the measurements are traveltimes and polarizations of the seismic signal. A convenient experimental setup for such observations is provided by vertical seismic profiles with receivers located in the wellbores and the sources located on the surface, or with both sources and receivers located in the neighbouring wellbores.Since the described research program focuses on the mathematical underpinnings of seismic investigations and their computational implementation, the results might suggest new paths of theoretical and computational investigations, such as the investigations of complex media in reservoir characterization.The proposed project contributes to the understanding of geophysical theory and to the enhancement of evaluation, exploration and exploitation of oil and gas reservoirs, and hence to the lessening of their environmental impact. The results of the proposed research will improve the imaging of data, and, as such, can be used in other fields, notably, in medical imaging.
我的研究涉及基于弹性理论的地震射线理论的逆问题,并包括使用地震测量获得表征地下的参数。在地震射线理论的背景下,测量的是地震信号的传播时间和极化。垂直地震剖面为这种观测提供了一种方便的实验装置,其接收器位于井筒中,震源位于地面,或者震源和接收器都位于邻近的井筒中。由于所描述的研究计划侧重于地震调查的数学基础及其计算实现,因此结果可能为理论和计算研究提供新的途径,例如储层表征中的复杂介质研究。拟议的项目有助于了解地球物理理论和加强石油和天然气储层的评价、勘探和开发,从而减少其对环境的影响。所提出的研究结果将改进数据成像,因此,可以用于其他领域,特别是医学成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slawinski, Michael其他文献
Slawinski, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slawinski, Michael', 18)}}的其他基金
Waves and rays in anisotropic and inhomogeneous Hookean solids: Mathematical formulation and empirical evaluation
各向异性和非均匀胡克固体中的波和射线:数学公式和经验评估
- 批准号:
RGPIN-2018-05158 - 财政年份:2022
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Waves and rays in anisotropic and inhomogeneous Hookean solids: Mathematical formulation and empirical evaluation
各向异性和非均匀胡克固体中的波和射线:数学公式和经验评估
- 批准号:
RGPIN-2018-05158 - 财政年份:2021
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Waves and rays in anisotropic and inhomogeneous Hookean solids: Mathematical formulation and empirical evaluation
各向异性和非均匀胡克固体中的波和射线:数学公式和经验评估
- 批准号:
RGPIN-2018-05158 - 财政年份:2020
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Waves and rays in anisotropic and inhomogeneous Hookean solids: Mathematical formulation and empirical evaluation
各向异性和非均匀胡克固体中的波和射线:数学公式和经验评估
- 批准号:
RGPIN-2018-05158 - 财政年份:2019
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Waves and rays in anisotropic and inhomogeneous Hookean solids: Mathematical formulation and empirical evaluation
各向异性和非均匀胡克固体中的波和射线:数学公式和经验评估
- 批准号:
RGPIN-2018-05158 - 财政年份:2018
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Distance in the space of elasticity tensors: optimal choices of Hookean models
弹性张量空间中的距离:胡克模型的最优选择
- 批准号:
238416-2013 - 财政年份:2017
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Distance in the space of elasticity tensors: optimal choices of Hookean models
弹性张量空间中的距离:胡克模型的最优选择
- 批准号:
238416-2013 - 财政年份:2016
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Distance in the space of elasticity tensors: optimal choices of Hookean models
弹性张量空间中的距离:胡克模型的最优选择
- 批准号:
238416-2013 - 财政年份:2015
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Distance in the space of elasticity tensors: optimal choices of Hookean models
弹性张量空间中的距离:胡克模型的最优选择
- 批准号:
238416-2013 - 财政年份:2014
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Distance in the space of elasticity tensors: optimal choices of Hookean models
弹性张量空间中的距离:胡克模型的最优选择
- 批准号:
238416-2013 - 财政年份:2013
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2019
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Best basis construction and comparison of trial functions for ill-posed inverse problems in Earth sciences - studied at the examples of global-scale seismic tomography and gravitational field modelling
地球科学中不适定反问题的最佳基础构建和试验函数比较——以全球尺度地震层析成像和重力场建模为例进行研究
- 批准号:
437390524 - 财政年份:2019
- 资助金额:
$ 1.06万 - 项目类别:
Research Grants
Mathematical and Numerical Problems in Seismic Imaging
地震成像中的数学和数值问题
- 批准号:
1939770 - 财政年份:2017
- 资助金额:
$ 1.06万 - 项目类别:
Studentship
Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
- 批准号:
226407518 - 财政年份:2012
- 资助金额:
$ 1.06万 - 项目类别:
Research Grants
Inverse problems in seismic ray theory: traveltime and polarization inverse
地震线理论中的反演问题:走时和极化反演
- 批准号:
238416-2007 - 财政年份:2011
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Inverse problems in seismic ray theory: traveltime and polarization inverse
地震线理论中的反演问题:走时和极化反演
- 批准号:
238416-2007 - 财政年份:2010
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual
Inverse problems in seismic ray theory: traveltime and polarization inverse
地震线理论中的反演问题:走时和极化反演
- 批准号:
238416-2007 - 财政年份:2009
- 资助金额:
$ 1.06万 - 项目类别:
Discovery Grants Program - Individual