Best basis construction and comparison of trial functions for ill-posed inverse problems in Earth sciences - studied at the examples of global-scale seismic tomography and gravitational field modelling
地球科学中不适定反问题的最佳基础构建和试验函数比较——以全球尺度地震层析成像和重力场建模为例进行研究
基本信息
- 批准号:437390524
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The choice of basis functions can essentially influence the result of an inverse problem. In view of today's demands on the accuracy of models, we are, consequently, confronted with the question how the obtained results can be confirmed or improved, respectively, by verifying or correcting (if necessary) the used basis functions. The arising questions are: can there be artefacts due to the used numerical method in individual structures in the mapping of e.g. a seismic velocity field or of the gravitational field? To what extent are data sensitive to single regional changes in the solution? Vice versa, how can local variations in the Earth or at the Earth's surface or, alternatively, known local errors in a current model be considered in a model, without deteriorating the model elsewhere? The latter appears to be better to achieve with local basis functions (such as radial basis functions) than with global basis functions (such as spherical harmonics).In the recent years, the principal investigator and his research group have developed several algorithms (the Regularized Functional Matching Pursuit, RFMP, and its enhancements) which are able to iteratively construct a kind of a best basis for an inverse problem. These methods were particularly elaborated for scenarios on the sphere or the ball. The applicability to several problems has already been demonstrated. However, the methods still have some limitations. E.g. large data sets, as they are common for the gravitational field, cannot be handled up to now, and the traveltime tomography does not allow efficient formulae for the forward calculations.Within this project, these algorithms shall be further enhanced, in order to make them better applicable to realistic problems in Earth sciences. We particularly consider global-scale seismic tomography and high-dimensional modelling of the gravitational potential. We expect especially new insights into these two practical problems. In the former case, the above mentioned question arises concerning possible artefacts in velocity models. RFMP and its variants yield the possibility to automatize the multi-scale adaptation of grid structures, which has previously been done manually. We anticipate an improvement of the accuracy of the calculated models. Moreover, the set of trial functions (which is called a dictionary) may be varied, in order to test how stable some aspects of a model are. This way, artefacts due to the choice of the basis functions can be better identified. In the case of gravitational field modelling, efficient ways shall be found which enable us to approximate local anomalies as locally concentrated and as accurately as possible, also in high-resolution models, by the choice of optimal additional basis functions (splines, wavelets, Slepians). For this purpose, new innovative ways of improving existing algorithms need to be found.
基函数的选择可以从根本上影响反问题的结果。鉴于当今对模型精度的要求,因此,我们面临的问题是如何通过验证或校正(如果必要)所使用的基函数来分别确认或改进所获得的结果。由此产生的问题是:在绘制例如地震速度场或重力场的地图时,是否会由于在各个结构中使用的数值方法而产生伪影?数据对解决方案中的单个区域更改的敏感程度如何?反之亦然,如何才能在模型中考虑地球或地球表面的局部变化,或者当前模型中已知的局部误差,而不使其他地方的模型恶化?后者似乎是更好地实现与局部基函数(如径向基函数)比全局基函数(如球谐函数)。在最近几年,主要研究者和他的研究小组已经开发了几种算法(正则函数匹配追踪,RFMP,及其增强),能够迭代构造一种最佳基的反问题。这些方法特别针对球体或球上的场景进行了详细说明。对几个问题的适用性已经得到证明。然而,这些方法仍然有一些局限性。例如,大数据集,因为它们是常见的重力场,到目前为止还不能处理,走时层析成像不允许用于正演计算的有效公式,在本项目中,这些算法将进一步增强,以便使它们更好地适用于地球科学中的现实问题。我们特别考虑全球规模的地震层析成像和高维建模的重力位。我们特别期待对这两个实际问题的新见解。在前一种情况下,上述问题涉及速度模型中可能的伪影。RFMP及其变体产生了自动化网格结构的多尺度适应的可能性,这在以前是手动完成的。我们预计计算模型的准确性的提高。此外,为了测试模型的某些方面有多稳定,试验函数集(称为字典)可以变化。这样,可以更好地识别由于基函数的选择而导致的伪影。在重力场建模的情况下,将找到有效的方法,使我们能够近似局部异常,局部集中和尽可能准确,也在高分辨率模型中,通过选择最佳的附加基函数(样条,小波,Slepians)。为此,需要找到改进现有算法的新的创新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Volker Michel其他文献
Professor Dr. Volker Michel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Volker Michel', 18)}}的其他基金
Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
- 批准号:
226407518 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Dictionary Learning for the non-linear approximation of spherical functions
球函数非线性逼近的字典学习
- 批准号:
169129297 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Kombination von modernen mathematischen Verfahren zur Regularisierung Inverser Probleme in der Medizin und den Geowissenschaften
结合现代数学方法对医学和地球科学中的反问题进行正则化
- 批准号:
47059215 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Entwicklung von lokalisierenden Spline- und Wavelet-Verfahren zur kombinierten Bestimmung des Erdinneren aus Gravitationsfeld- und Erdbebendaten
开发用于根据重力场和地震数据联合确定地球内部的定位样条和小波方法
- 批准号:
18878082 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
求解Basis Pursuit问题的数值优化方法
- 批准号:11001128
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
TB方法在有机和生物大分子体系计算研究中的应用
- 批准号:20773047
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Structural basis of the flagellar axial structure and its construction
鞭毛轴向结构的结构基础及其构建
- 批准号:
21H02443 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of a new Vero cell system to be the basis for coronavirus research and vaccine development
构建新的 Vero 细胞系统作为冠状病毒研究和疫苗开发的基础
- 批准号:
21H02630 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular basis of MDS pathogenesis and construction of novel MDS prognostic model
MDS发病机制的分子基础及新型MDS预后模型的构建
- 批准号:
21K08366 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Basis for Structural and Behavioral Effects of Chronic Opioid Exposure
慢性阿片类药物暴露的结构和行为影响的分子基础
- 批准号:
10209941 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Molecular Basis for Structural and Behavioral Effects of Chronic Opioid Exposure
慢性阿片类药物暴露的结构和行为影响的分子基础
- 批准号:
10405499 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Molecular Basis for Structural and Behavioral Effects of Chronic Opioid Exposure
慢性阿片类药物暴露的结构和行为影响的分子基础
- 批准号:
10615802 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Dissection of the molecular basis of membrane vesicle biogenesis and construction of an extracellular platform for substance production by using a hyper-vesiculating bacterium
剖析膜囊泡生物发生的分子基础,并利用超囊泡细菌构建用于物质生产的细胞外平台
- 批准号:
20K20570 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Construction of a new design basis toward the manufacturing of high toughness electrode in solid oxide fuel cells
构建固体氧化物燃料电池高韧性电极制造新设计基础
- 批准号:
20H02033 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Brain Basis of Emotion: A Category Construction Problem
情绪的大脑基础:类别构建问题
- 批准号:
1947972 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Molecular basis of multimeric antibody fragments towards the construction of highly functional antibody-drug conjugates
构建高功能抗体-药物缀合物的多聚抗体片段的分子基础
- 批准号:
20K05721 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)