Singular moduli on Shimura curves

Shimura 曲线上的奇异模量

基本信息

  • 批准号:
    312426-2006
  • 负责人:
  • 金额:
    $ 0.36万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

My work is on studying Shimura curves, which are parameter spaces of certain surfaces called QM abelian surfaces. The theory of Shimura curves is expected to resemble the theory of Modular curves as the two are very connected. The theory of Modular curves has been very instrumental in the solution of Fermat's Last Theorem, and many other important mathematical problems. My work is based on extending known results from Modular curves to Shimura curves, my results are very computational and thus have wide application.
我的工作是研究志村曲线,这是参数空间的某些曲面称为QM交换曲面。志村曲线的理论预计类似于模曲线的理论,因为两者非常相关。模曲线理论在解决费马大定理和许多其他重要的数学问题中起到了非常重要的作用。我的工作是基于推广已知的结果从模曲线到志村曲线,我的结果是非常计算,因此有广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baba, Srinath其他文献

Baba, Srinath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baba, Srinath', 18)}}的其他基金

Singular moduli on Shimura curves
Shimura 曲线上的奇异模量
  • 批准号:
    312426-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Discovery Grants Program - Individual
Singular moduli on Shimura curves
Shimura 曲线上的奇异模量
  • 批准号:
    312426-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Discovery Grants Program - Individual
Singular moduli on Shimura curves
Shimura 曲线上的奇异模量
  • 批准号:
    312426-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Discovery Grants Program - Individual
Singular moduli on Shimura curves
Shimura 曲线上的奇异模量
  • 批准号:
    312426-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
标准模型精确检验和新物理研究
  • 批准号:
    10747127
  • 批准年份:
    2007
  • 资助金额:
    2.0 万元
  • 项目类别:
    专项基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
  • 批准号:
    10401026
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

不確定特異性を持つ完全積分可能系の漸近解析・大域解析とmoduli空間の諸相
具有不确定奇点和模空间方面的完全可积系统的渐近分析/全局分析
  • 批准号:
    23K20219
  • 财政年份:
    2024
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
  • 批准号:
    2338485
  • 财政年份:
    2024
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Continuing Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Standard Grant
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
  • 批准号:
    2309181
  • 财政年份:
    2023
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Standard Grant
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
  • 批准号:
    23K03140
  • 财政年份:
    2023
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 0.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了