On Poisson models under Markovian environments and their applications in risk theory

马尔可夫环境下的泊松模型及其在风险理论中的应用

基本信息

  • 批准号:
    327003-2006
  • 负责人:
  • 金额:
    $ 0.95万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

The classical homogeneous Poisson counting process and its corresponding risk model have been investigated extensively in the actuarial literature. This risk model assumes a constant intensity rate for the occurrence of claims which is not realistic in some practical situations.  I intend to work on the generalization of the homogeneous Poisson process in this research project. One generalization is the non-homogeneous Poisson (NHP) process, in which the claim intensity is a function of time reflecting the seasonality of the risk. This research project focuses on the Cox process with periodicity and under Markovian environment, which is a natural extension of the NHP process and can be used to characterize the underlying risk fluctuations in the claims intensity.          Insurance risks that are subject to seasonal conditions clearly evolve in periodic random environments. There are instances where such seasonal effects combine with social or other natural phenomena to produce periodic or even more general environments. For example, weather factors are known to affect automobile or fire insurance claims, while seasonal snow storms in the north and hurricanes or floods in the south affect property insurance. In general, the work expected to be done on the risk-related quantities, statistical inferences and ruin-related problems for the proposed models would provide an effective and quantitative method for insurance companies to measure risk more accurately by using time dependent, rather than piecewise constant, intensity rates. The periodicity and Markovian components considered for the processes would make these models more practical and useful in modeling counting processes under seasonality and random environments. The possibility of allowing the claim intensity, the claim severity and the premium of the Poisson risk process to vary in time is a major step towards more realistic models and better motivated than many other extensions like renewal arrival processes.
经典的齐次Poisson计数过程及其相应的风险模型在精算文献中得到了广泛的研究。该风险模型假设索赔发生的强度为常数,这在某些实际情况下是不现实的。在本研究项目中,我打算对齐次泊松过程进行推广。一种推广是非齐次泊松(NHP)过程,其中索赔强度是时间的函数,反映了风险的季节性。本文研究马尔可夫环境下的周期性考克斯过程,它是NHP过程的自然推广,可以用来刻画索赔强度的潜在风险波动。 受季节性条件影响的保险风险显然是在周期性随机环境中演变的。在某些情况下,这种季节性效应联合收割机与社会或其他自然现象相结合,产生周期性甚至更普遍的环境。例如,众所周知,天气因素会影响汽车或火灾保险索赔,而北方的季节性暴风雪和南方的飓风或洪水会影响财产保险。一般而言,预计将完成的工作,对风险相关的数量,统计推断和破产相关的问题,建议的模型将提供一个有效的和定量的方法,保险公司更准确地衡量风险,使用时间依赖,而不是分段恒定的强度率。周期性和马尔可夫分量考虑的过程将使这些模型更实用和有用的建模计数过程下的季节性和随机环境。允许索赔强度,索赔严重程度和保费的泊松风险过程随时间变化的可能性是一个重要的一步,更现实的模型和更好的动机比许多其他扩展,如更新到达过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Yi其他文献

Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode.
  • DOI:
    10.1007/s40820-023-01222-2
  • 发表时间:
    2023-11-06
  • 期刊:
  • 影响因子:
    26.6
  • 作者:
    Nason, Charlie A. F.;Saroja, Ajay Piriya Vijaya Kumar;Lu, Yi;Wei, Runzhe;Han, Yupei;Xu, Yang
  • 通讯作者:
    Xu, Yang
Evidence from SINPHONIE project: Impact of home environmental exposures on respiratory health among school-age children in Romania
  • DOI:
    10.1016/j.scitotenv.2017.11.157
  • 发表时间:
    2018-04-15
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Lu, Yi;Lin, Shao;Neamtiu, Iulia A.
  • 通讯作者:
    Neamtiu, Iulia A.
RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis.
  • DOI:
    10.1172/jci166647
  • 发表时间:
    2023-05-15
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Wang, Mu-En;Chen, Jiaqi;Lu, Yi;Bawcom, Alyssa R.;Wu, Jinjin;Ou, Jianhong;Asara, John M.;Armstrong, Andrew J.;Wang, Qianben;Li, Lei;Wang, Yuzhuo;Huang, Jiaoti;Chen, Ming
  • 通讯作者:
    Chen, Ming
Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex.
  • DOI:
    10.1021/ac302167d
  • 发表时间:
    2012-09-18
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Li, Le-Le;Ge, Pinghua;Selvin, Paul R.;Lu, Yi
  • 通讯作者:
    Lu, Yi
Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles.
  • DOI:
    10.1038/s41467-023-39423-3
  • 发表时间:
    2023-06-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cai, Jie;Peng, Jie;Feng, Juan;Li, Ruocheng;Ren, Peng;Zang, Xinwei;Wu, Zezong;Lu, Yi;Luo, Lin;Hu, Zhenzhen;Wang, Jiaying;Dai, Xiaomeng;Zhao, Peng;Wang, Juan;Yan, Mi;Liu, Jianxin;Deng, Renren;Wang, Diming
  • 通讯作者:
    Wang, Diming

Lu, Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Yi', 18)}}的其他基金

Modeling, Analyzing and Managing Insurance Risks
保险风险建模、分析和管理
  • 批准号:
    RGPIN-2019-05640
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analyzing and Managing Insurance Risks
保险风险建模、分析和管理
  • 批准号:
    RGPIN-2019-05640
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analyzing and Managing Insurance Risks
保险风险建模、分析和管理
  • 批准号:
    RGPIN-2019-05640
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Analyzing and Managing Insurance Risks
保险风险建模、分析和管理
  • 批准号:
    RGPIN-2019-05640
  • 财政年份:
    2019
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Space-Time Risk Processes with Applications in Non-Life Insurance
时空风险过程及其在非人寿保险中的应用
  • 批准号:
    RGPIN-2014-06148
  • 财政年份:
    2018
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Space-Time Risk Processes with Applications in Non-Life Insurance
时空风险过程及其在非人寿保险中的应用
  • 批准号:
    RGPIN-2014-06148
  • 财政年份:
    2017
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Space-Time Risk Processes with Applications in Non-Life Insurance
时空风险过程及其在非人寿保险中的应用
  • 批准号:
    RGPIN-2014-06148
  • 财政年份:
    2016
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Space-Time Risk Processes with Applications in Non-Life Insurance
时空风险过程及其在非人寿保险中的应用
  • 批准号:
    RGPIN-2014-06148
  • 财政年份:
    2015
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Space-Time Risk Processes with Applications in Non-Life Insurance
时空风险过程及其在非人寿保险中的应用
  • 批准号:
    RGPIN-2014-06148
  • 财政年份:
    2014
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
On risk models under Markovian environments and their applications
马尔可夫环境下的风险模型及其应用
  • 批准号:
    327003-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Standard Grant
Large-scale phylodynamics under non-neutral and non-treelike models of evolution
非中性和非树状进化模型下的大规模系统动力学
  • 批准号:
    10713003
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Improving Healthcare Quality and Equity For Older Adults with HIV Under Value-Based Care Models
在基于价值的护理模式下提高艾滋病毒感染者的医疗质量和公平性
  • 批准号:
    10762522
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Machine Learning for Ventricular Arrhythmias
室性心律失常的机器学习
  • 批准号:
    10658931
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Optimizing Acquisition and Reconstruction of Under-sampled MRI for Signal Detection
优化欠采样 MRI 的采集和重建以进行信号检测
  • 批准号:
    10730707
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Research Grant
CAREER: Scalable Consensus Protocol Design with Accountability and Privacy under Practical Failure Models
职业:在实际失败模型下具有责任和隐私的可扩展共识协议设计
  • 批准号:
    2237814
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了