Decay of the Fourier coefficients of a pluri sub harmonic periodic function

多次次谐波周期函数的傅里叶系数的衰减

基本信息

  • 批准号:
    352381-2007
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivrii, Oleg其他文献

Ivrii, Oleg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivrii, Oleg', 18)}}的其他基金

PGS M
PGS M
  • 批准号:
    376832-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Postgraduate Scholarships - Master's
Conformal invariance of random planar fractals
随机平面分形的共形不变性
  • 批准号:
    382315-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Graphic represenation of singularsurfaces
奇异曲面的图形表示
  • 批准号:
    366488-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

基于自适应Fourier分解型方法的非高斯过程模拟研究
  • 批准号:
    LQ23A010014
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
非交换Fourier-Schur乘子理论及应用
  • 批准号:
    12301161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自相似测度Fourier变换的衰减性研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
尖形式Fourier系数的变号问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于解绕Fourier分解的远程心电图实时分析研究
  • 批准号:
    62106233
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维Fourier 级数和Chebyshev 级数的最优截断研究
  • 批准号:
    2021JJ40331
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
弹性波多频反源问题的Fourier方法研究
  • 批准号:
    12001140
  • 批准年份:
    2020
  • 资助金额:
    8.0 万元
  • 项目类别:
    青年科学基金项目
与Fourier积分算子、均匀化相关的调和分析问题之研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Fourier积分算子及相应局部光滑性猜想
  • 批准号:
    12026407
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
基于背景信息的快速高精度Fourier叠层成像算法研究
  • 批准号:
    61977065
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

New bounds towards Fourier coefficients of Siegel modular forms
西格尔模形式傅里叶系数的新界限
  • 批准号:
    EP/W001160/1
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grant
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
  • 批准号:
    EP/T028343/1
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grant
Fourier coefficients and zeros of modular forms
模形式的傅立叶系数和零点
  • 批准号:
    19F19318
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Some Problems on Fourier Coefficients of Automorphic Forms and L-functions
自守形式和L函数傅里叶系数的一些问题
  • 批准号:
    1901802
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Fourier coefficients of kernels of casp forms.
casp 形式内核的傅里叶系数。
  • 批准号:
    1946566
  • 财政年份:
    2017
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Studentship
Fourier Coefficients, L-functions, and Endoscopy Correspondences of Automorphic Forms
自守形式的傅里叶系数、L 函数和内窥镜对应
  • 批准号:
    1301567
  • 财政年份:
    2013
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Studies on stochastic Fourier coefficients
随机傅里叶系数的研究
  • 批准号:
    25400135
  • 财政年份:
    2013
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automorphic L-Functions, Fourier Coefficients, and Applications
自守 L 函数、傅立叶系数和应用
  • 批准号:
    1201362
  • 财政年份:
    2012
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
The distribution of the Fourier coefficients of modular forms and arithmetic applications
模形式的傅里叶系数的分布和算术应用
  • 批准号:
    0901090
  • 财政年份:
    2009
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Arithmetic properties of automorphic forms-Bounds on Fourier coefficients and the interplay between hypergeometric series and automorphic forms
自同构形式的算术性质-傅里叶系数的界限以及超几何级数与自同构形式之间的相互作用
  • 批准号:
    0757907
  • 财政年份:
    2008
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了