Causal inference via graphical Markov models
通过图形马尔可夫模型进行因果推理
基本信息
- 批准号:326951-2006
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research supported by this NSERC Discovery grant focuses on model selection. Model search is an important part of statistical analyses, particularly in the absence of background knowledge. The main objective of this research is to develop an efficient model search procedure for processes for which some variables may be unobserved. Graphical Markov models have been used to represent processes from diverse fields such as economics, social sciences, computer science, and engineering. In these settings it is often assumed that the process can be represented by a directed acyclic graph (DAG) in which the relevant variables form the vertices of the graph and the presence or absence of arrows between vertices encode the relationships between the variables. In many applications, the structure of the graph is assumed known. More recently, graphical models have been used to infer biological interactions from gene expression data. In such settings, where the underlying structure of the graph is unkown, there may be many causal explanations (graphs) that are equivalent in that they are equally consistent with observed data. Recent advances have been made to represent the common aspects of these explanations into one representation, called an equivalence class. If data is available for only some of the relevant variables, then it is of interest to determine how every causal explanation among the observed variables change in the presence of latent (unobserved) variables. The work supported by this grant aims to develop a procedure that searches across equivalence classes of DAG models with latent and selection variables.
NSERC发现基金支持的研究重点是模型选择。模型搜索是统计分析的重要组成部分,特别是在缺乏背景知识的情况下。本研究的主要目的是为某些变量可能未被观察到的过程开发一种有效的模型搜索程序。图形马尔可夫模型已被用于表示不同领域的过程,如经济学、社会科学、计算机科学和工程学。在这些设置中,通常假设过程可以用有向无环图(DAG)表示,其中相关变量形成图的顶点,顶点之间的箭头的存在或不存在编码变量之间的关系。在许多应用中,假设图的结构是已知的。最近,图形模型被用于从基因表达数据推断生物相互作用。在这种情况下,图的底层结构是未知的,可能有许多因果解释(图)是等效的,因为它们同样与观察到的数据一致。最近取得的进展是将这些解释的共同方面表示为一种表示,称为等效类。如果只有一些相关变量的数据可用,那么确定观察到的变量之间的每个因果解释如何在潜在(未观察到的)变量的存在下变化是有意义的。这项资助的工作旨在开发一种程序,该程序可以搜索具有潜在变量和选择变量的DAG模型的等效类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali, RebeccaAyesha其他文献
Ali, RebeccaAyesha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali, RebeccaAyesha', 18)}}的其他基金
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2020
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2018
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2017
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2015
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2014
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Structure in Model Search for High Dimensional Data
在高维数据模型搜索中利用图形结构
- 批准号:
326951-2013 - 财政年份:2013
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Causal inference via graphical Markov models
通过图形马尔可夫模型进行因果推理
- 批准号:
326951-2006 - 财政年份:2011
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Causal inference via graphical Markov models
通过图形马尔可夫模型进行因果推理
- 批准号:
326951-2006 - 财政年份:2009
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Causal inference via graphical Markov models
通过图形马尔可夫模型进行因果推理
- 批准号:
326951-2006 - 财政年份:2007
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Causal inference via graphical Markov models
通过图形马尔可夫模型进行因果推理
- 批准号:
326951-2006 - 财政年份:2006
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Designing Interaction Freedom via Active Inference
通过主动推理设计交互自由度
- 批准号:
EP/Y029178/1 - 财政年份:2024
- 资助金额:
$ 0.58万 - 项目类别:
Research Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
- 批准号:
2310288 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Estimation and Inference via Computational Statistics Algorithms
通过计算统计算法进行估计和推理
- 批准号:
RGPIN-2019-04142 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
- 批准号:
2210007 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
CAREER: Distributed Inference-Making via Crowdsensing
职业:通过群体感知进行分布式推理
- 批准号:
2302197 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
- 批准号:
2210002 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
Traffic safety margin inference via machine learning for 3D spatial modeling
通过 3D 空间建模的机器学习进行交通安全裕度推断
- 批准号:
572807-2022 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Alliance Grants
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
- 批准号:
2203741 - 财政年份:2021
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant