Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
基本信息
- 批准号:2210002
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multivariate and functional time series are prevalent and routinely collected in many fields. Statistical inference of such time series is a fundamental problem in modern time series analysis and has broad applications in many scientific areas, including bioinformatics, business, climate science, economics, finance, genetics, and signal processing. Compared with existing methodologies, this research project will provide nonparametric inference procedures that can accommodate a wide range of dimensionality and require weak assumptions on the data generating processes. The methodology ensuing from the project will be disseminated to the relevant scientific communities via publications, conference and seminar presentations, and the development of open-source software. The project will involve multiple research mentoring initiatives, including efforts on broadening participation, and will offer advanced topic courses to introduce the state-of-the-art techniques in time series analysis. The project will provide a broad range of interdisciplinary training opportunities at all educational levels and will contribute to the future workforce professional development.The project will develop a systematic body of methods and theory on inference for both multivariate (including high-dimensional) time series and functional time series based on sample splitting (SS) and self-normalization (SN). Recently, the SN technique has been advanced to the inference of high-dimensional time series, but it requires the use of a trimming parameter. Also, its scope of applicability is limited to high-dimensional time series with weak panel dependence which might be unrealistic in many modern time series applications. In turn, the existing SN for functional time series relies on dimension reduction by functional principal component analysis and, hence, the resulting procedure may be powerless when the alternative is orthogonal to the space spanned by the top principal components used in the procedure. To address these major limitations, this project will develop a new unified framework based on SS-SN, in conjunction with inference for multivariate and functional time series, and investigate its utility in application to analysis of time series of low, medium, high or infinite dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多变量和功能时间序列是普遍的,并且在许多领域都经常收集。这种时间序列的统计推断是现代时间序列分析中的一个基本问题,并且在许多科学领域都有广泛的应用,包括生物信息学,商业,气候科学,经济学,金融,遗传学和信号处理。与现有方法相比,该研究项目将提供非参数推理程序,这些程序可以适应广泛的维度,并且需要对数据生成过程的假设较弱。该项目随之而来的方法将通过出版物,会议和研讨会演讲以及开源软件的开发传播到相关的科学社区。该项目将涉及多个研究指导计划,包括在扩大参与方面的努力,并将提供高级主题课程,以介绍时间序列分析中最先进的技术。该项目将在所有教育水平上提供广泛的跨学科培训机会,并将为未来的劳动力专业发展做出贡献。该项目将开发系统的方法和理论,内容涉及基于样本跨度(SS)和自我分类(SN)的多变量(包括高维)时间序列和功能时间序列的推断。最近,SN技术已推进了高维时间序列的推断,但需要使用修剪参数。同样,其适用性范围仅限于具有弱面板依赖性的高维时间序列,这在许多现代时间序列应用中可能是不现实的。反过来,现有的功能时间序列的SN依赖于功能主成分分析的尺寸缩小,因此,当替代方案与该过程中使用的顶级主要组件跨越的空间正交时,所得过程可能无能为力。为了解决这些主要局限性,该项目将开发一个基于SS-SN的新统一框架,并结合推断多变量和功能性时间序列的推断,并调查其在应用程序中的效用,以在低,中等,高或无限维度的时间序列中应用。该奖项通过评估企业的支持和众所周知的范围,反映了NSF的法定任务,并反映了构成的依据。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Another look at bandwidth-free inference: a sample splitting approach
另一种无带宽推理的视角:样本分割方法
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Zhang, Y;Shao, X.
- 通讯作者:Shao, X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Shao其他文献
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
- DOI:
10.1017/s0266466610000253 - 发表时间:
2010-08 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao;W. Wu - 通讯作者:
W. Wu
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yinxiao Huang;S. Volgushev;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
Improving the bandwidth-free inference methods by prewhitening
通过预白化改进无带宽推理方法
- DOI:
10.1016/j.jspi.2013.06.016 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yeonwoo Rho;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
Xiaofeng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Shao', 18)}}的其他基金
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
- 批准号:
2014018 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
- 批准号:
1807023 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
- 批准号:
1613190 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607489 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
- 批准号:
1407037 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
- 批准号:
1104545 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
- 批准号:
0804937 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
环境混合污染物的健康效应统计分析方法研究
- 批准号:82373690
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于语义增强多点地质统计的三维地质体精细建模方法研究
- 批准号:42372345
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于统计分布的超灵敏/单分子表面增强光谱定量检测研究
- 批准号:12374028
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
统计过程监测理论在肠道菌群健康指数构建过程中的适用性研究
- 批准号:32372345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SMR#3841 高维统计分析研究的机遇和挑战
- 批准号:12381240133
- 批准年份:2023
- 资助金额:2.00 万元
- 项目类别:国际(地区)合作研究与交流项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: