Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting
合作研究:通过样本分割对多元和函数时间序列进行统计推断
基本信息
- 批准号:2210002
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multivariate and functional time series are prevalent and routinely collected in many fields. Statistical inference of such time series is a fundamental problem in modern time series analysis and has broad applications in many scientific areas, including bioinformatics, business, climate science, economics, finance, genetics, and signal processing. Compared with existing methodologies, this research project will provide nonparametric inference procedures that can accommodate a wide range of dimensionality and require weak assumptions on the data generating processes. The methodology ensuing from the project will be disseminated to the relevant scientific communities via publications, conference and seminar presentations, and the development of open-source software. The project will involve multiple research mentoring initiatives, including efforts on broadening participation, and will offer advanced topic courses to introduce the state-of-the-art techniques in time series analysis. The project will provide a broad range of interdisciplinary training opportunities at all educational levels and will contribute to the future workforce professional development.The project will develop a systematic body of methods and theory on inference for both multivariate (including high-dimensional) time series and functional time series based on sample splitting (SS) and self-normalization (SN). Recently, the SN technique has been advanced to the inference of high-dimensional time series, but it requires the use of a trimming parameter. Also, its scope of applicability is limited to high-dimensional time series with weak panel dependence which might be unrealistic in many modern time series applications. In turn, the existing SN for functional time series relies on dimension reduction by functional principal component analysis and, hence, the resulting procedure may be powerless when the alternative is orthogonal to the space spanned by the top principal components used in the procedure. To address these major limitations, this project will develop a new unified framework based on SS-SN, in conjunction with inference for multivariate and functional time series, and investigate its utility in application to analysis of time series of low, medium, high or infinite dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多元函数时间序列在许多领域都是普遍存在的。这种时间序列的统计推断是现代时间序列分析中的基本问题,并且在许多科学领域中具有广泛的应用,包括生物信息学、商业、气候科学、经济学、金融学、遗传学和信号处理。与现有的方法相比,本研究项目将提供非参数推理程序,可以容纳广泛的维度,并需要弱假设的数据生成过程。该项目产生的方法将通过出版物、会议和研讨会介绍以及开发开放源码软件向有关科学界传播。该项目将涉及多项研究指导举措,包括努力扩大参与,并将提供高级专题课程,介绍时间序列分析方面的最新技术。该项目将为所有教育水平提供广泛的跨学科培训机会,并将有助于未来的劳动力专业发展。该项目将开发基于样本分裂(SS)和自归一化(SN)的多变量(包括高维)时间序列和函数时间序列的推理方法和理论的系统体。最近,SN技术已被推进到高维时间序列的推断,但它需要使用一个修剪参数。此外,它的适用范围仅限于高维时间序列与弱面板依赖,这可能是不现实的,在许多现代时间序列的应用。反过来,现有的SN功能时间序列依赖于降维功能主成分分析,因此,所得到的程序可能是无能为力的替代时,正交的空间跨越的顶部主成分在程序中使用。为了解决这些主要的局限性,本项目将开发一个新的统一框架,基于SS-SN,结合多变量和函数时间序列的推理,并研究其在低,中,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Another look at bandwidth-free inference: a sample splitting approach
另一种无带宽推理的视角:样本分割方法
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Zhang, Y;Shao, X.
- 通讯作者:Shao, X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Shao其他文献
TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS
- DOI:
10.1017/s0266466610000253 - 发表时间:
2010-08 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES
非线性过程分数阶积分的局部Whittle估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0.8
- 作者:
Xiaofeng Shao;W. Wu - 通讯作者:
W. Wu
ON SELF‐NORMALIZATION FOR CENSORED DEPENDENT DATA
关于审查相关数据的自标准化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yinxiao Huang;S. Volgushev;Xiaofeng Shao - 通讯作者:
Xiaofeng Shao
19世紀末フランスにおける日本古典文学の受容――『源氏物語』と和歌を中心に――
19世纪末法国日本古典文学的接受——以《源氏物语》与和歌诗为中心
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
明石郁哉;Xiaofeng Shao;田中雅大;常田槙子 - 通讯作者:
常田槙子
Xiaofeng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Shao', 18)}}的其他基金
Collaborative Research: Segmentation of Time Series via Self-Normalization
协作研究:通过自我归一化对时间序列进行分割
- 批准号:
2014018 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for High-Dimensional Time Series
高维时间序列的统计推断
- 批准号:
1807023 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Group-Specific Individualized Modeling and Recommender Systems for Large-Scale Complex Data
针对大规模复杂数据的特定群体个性化建模和推荐系统
- 批准号:
1613190 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Inference for Functional and High Dimensional Data with New Dependence Metrics
协作研究:使用新的依赖性度量对功能和高维数据进行统计推断
- 批准号:
1607489 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Modeling, Adjustment and Inference for Seasonal Time Series
季节性时间序列的统计建模、调整和推断
- 批准号:
1407037 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for Temporally Dependent Functional Data
时间相关函数数据的统计推断
- 批准号:
1104545 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical Inference for Long Memory and Nonlinear Time Series
长记忆和非线性时间序列的统计推断
- 批准号:
0804937 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant