Counting solutions to equations over fields of large characteristic

计算大特征场上方程的解

基本信息

  • 批准号:
    DE120101293
  • 负责人:
  • 金额:
    $ 26.91万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Early Career Researcher Award
  • 财政年份:
    2012
  • 资助国家:
    澳大利亚
  • 起止时间:
    2012-01-02 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

This project will make major contributions to a fundamental problem in mathematics and computer science, namely counting the number of solutions to certain types of polynomial equations. This work has potential applications in computer security, information processing, and pure mathematics.
该项目将对数学和计算机科学中的一个基本问题做出重大贡献,即计算某些类型的多项式方程的解的数量。这项工作在计算机安全、信息处理和纯数学方面有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr David Harvey其他文献

Dr David Harvey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr David Harvey', 18)}}的其他基金

Counting points on algebraic surfaces
计算代数曲面上的点
  • 批准号:
    FT160100219
  • 财政年份:
    2017
  • 资助金额:
    $ 26.91万
  • 项目类别:
    ARC Future Fellowships
Fast algorithms for zeta functions of algebraic varieties
代数簇 zeta 函数的快速算法
  • 批准号:
    DP150101689
  • 财政年份:
    2015
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Discovery Projects

相似国自然基金

无穷维哈密顿系统的KAM理论
  • 批准号:
    10771098
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Standard Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Standard Grant
Pathological solutions of fluid equations
流体方程的病理解
  • 批准号:
    2308208
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large steady solutions to the free-boundary Navier-Stokes equations
自由边界纳维-斯托克斯方程的大稳态解
  • 批准号:
    2886064
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Studentship
Research on the behavior of solutions to nonlinear Schrodinger equations of non-conserved models
非守恒模型非线性薛定谔方程解的行为研究
  • 批准号:
    23K03168
  • 财政年份:
    2023
  • 资助金额:
    $ 26.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了