Computer algebra and the integrability of continuous and discrete systems

计算机代数以及连续和离散系统的可积性

基本信息

  • 批准号:
    249783-2007
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

In mathematics and physics a soliton is a self-reinforcing solitary wave caused by a delicate balance between nonlinear and dispersive effects in the medium. Phenomena in physics where solitons occur include: special water waves, atmospheric waves, and waves in non-linear optics. Solitons are industrially relevant in transmission through fiber optical systems that increases the performance of optical telecommunications. Partial differential equations (PDEs) that have soliton solutions show many characteristic properties, as the existence of so-called Baecklund transformations that generate more complicated soliton solutions from simpler ones and the existence of non-linear superposition principles of solutions. The relatively young field of Discrete Differential Geometry is able to derive all these properties of such PDEs from a deeper principle: the consistency of a discrete (n+1)- dimensional grid that is built from n - dimensional discrete faces that satisfy a so-called face relation. PDEs with soliton solutions, together with their Baecklund transformations and superposition principles can be derived through suitable limiting procedures from those (n+1) - dimensional grids. One aim of this proposal is to study such face relations (e.g. the determination of major classes of 3- and 4-dimensional face relations) and for that purpose to develop computer algebra algorithms and refine techniques that are needed to solve the related algebraic conditions of unprecedented size, involving 10^17 terms (these techniques will have other applications afterwards and are of potential interest for commercial computer algebra systems as well); hence, to make a statement whether 4-dimensional integrable solitonic systems exist, and thus to contribute to a deeper understanding of the integrability of PDEs. This research will be done in collaboration with leading international experts in this area from the TU Berlin and LMU Munich.
在数学和物理学中,孤子是一种自我增强的孤立波,由介质中非线性和色散效应之间的微妙平衡引起。物理学中出现孤子的现象包括:特殊的水波、大气波和非线性光学中的波。在工业上,通过光纤系统传输孤子可以提高光通信的性能。具有孤子解的偏微分方程(PDEs)表现出许多特征性质,如所谓的贝克伦变换的存在,这种变换可以从简单的孤子解产生更复杂的孤子解,以及解的非线性叠加原理的存在。相对年轻的离散微分几何领域能够从一个更深层次的原理推导出这些偏微分方程的所有性质:由满足所谓面关系的n维离散面构建的离散(n+1)维网格的一致性。从这些(n+1)维网格中,可以通过适当的限制程序推导出具有孤子解的偏微分方程及其贝克伦变换和叠加原理。本提案的目的之一是研究这种面关系(例如,确定3维和4维面关系的主要类别),并为此目的开发计算机代数算法和改进解决涉及10^17项的空前规模的相关代数条件所需的技术(这些技术随后将有其他应用,并且对商业计算机代数系统也有潜在的兴趣);因此,提出一个关于四维可积孤子系统是否存在的命题,从而有助于对偏微分方程的可积性有更深的理解。这项研究将与来自柏林工业大学和慕尼黑大学的该领域领先的国际专家合作完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolf, Thomas其他文献

Nanoscopic hydrophilic/hydrophilic phase-separation well below the LCST of polyphosphoesters
  • DOI:
    10.1039/c8cc09788g
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Hunold, Johannes;Wolf, Thomas;Hinderberger, Dariush
  • 通讯作者:
    Hinderberger, Dariush
Distinctive Spatiotemporal Stability of Somatic Mutations in Metastasized Microsatellite-stable Colorectal Cancer
  • DOI:
    10.1097/pas.0000000000000423
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Jesinghaus, Moritz;Wolf, Thomas;Weichert, Wilko
  • 通讯作者:
    Weichert, Wilko
Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity.
  • DOI:
    10.1038/s41467-023-38994-5
  • 发表时间:
    2023-06-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Haeder, Antje;Schaeuble, Sascha;Gehlen, Jan;Thielemann, Nadja;Buerfent, Benedikt C.;Schueller, Vitalia;Hess, Timo;Wolf, Thomas;Schroeder, Julia;Weber, Michael;Huenniger, Kerstin;Loeffler, Juergen;Vylkova, Slavena;Panagiotou, Gianni;Schumacher, Johannes;Kurzai, Oliver
  • 通讯作者:
    Kurzai, Oliver
Human adults prefer to cooperate even when it is costly.
A Library of Well-Defined and Water-Soluble Poly(alkyl phosphonate)s with Adjustable Hydrolysis
  • DOI:
    10.1021/acs.macromol.5b00897
  • 发表时间:
    2015-06-23
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Wolf, Thomas;Steinbach, Tobias;Wurm, Frederik R.
  • 通讯作者:
    Wurm, Frederik R.

Wolf, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolf, Thomas', 18)}}的其他基金

Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了