Prime numbers and L-functions
素数和 L 函数
基本信息
- 批准号:312430-2010
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most studied objects in mathematics is the Riemann zeta function. In 1859, the famous German mathematician Bernhard Riemann wrote his one article concerning the theory of numbers. In this important tract he proposed that prime numbers may be studied via the Riemann zeta function. In addition, he provided a specific method to study prime numbers via this function. This method involved studying certain numbers which are called the zeros of the Riemann zeta function. Riemann proposed a simple yet deep conjecture concerning the zeros. The Riemann hypothesis is Riemann's conjecture that all the zeros sit on a straight line. This remains one of the most important unsolved problems in mathematics. It has inspired a significant amount of research by some of the best researchers working in diverse fields of mathematics. Its resolution will provide much finer information concerning our current knowledge of prime numbers. A generalization of this conjecture, the Generalized Riemann Hypothesis, is also believed to be true. This conjecture concerns the location of zeros of L-functions. An L-function is a variant of the Riemann zeta function. My research concerns the behaviour of L-functions and their zeros. These functions also encode deep information concerning prime numbers. I am interested in the interplay between prime numbers and L-functions. In addition, a large part of my research concerns multiplicative functions. These functions are intimately related to both L-functions and primes. Questions concerning the location of zeros of an L-function or the size of an L-function can often be interpreted in terms of a multiplicative function. Therefore I shall investigate the finer behaviour of certain multiplicative functions. In summary, I propose to study L-functions by using tools involving prime numbers and multiplicative functions and on the other hand, I will study primes via properties of L-functions and multiplicative functions.
One of the most studied objects in mathematics is the Riemann zeta function. In 1859, the famous German mathematician Bernhard Riemann wrote his one article concerning the theory of numbers. In this important tract he proposed that prime numbers may be studied via the Riemann zeta function. In addition, he provided a specific method to study prime numbers via this function. This method involved studying certain numbers which are called the zeros of the Riemann zeta function. Riemann proposed a simple yet deep conjecture concerning the zeros. The Riemann hypothesis is Riemann's conjecture that all the zeros sit on a straight line. This remains one of the most important unsolved problems in mathematics. It has inspired a significant amount of research by some of the best researchers working in diverse fields of mathematics. Its resolution will provide much finer information concerning our current knowledge of prime numbers. A generalization of this conjecture, the Generalized Riemann Hypothesis, is also believed to be true. This conjecture concerns the location of zeros of L-functions. An L-function is a variant of the Riemann zeta function. My research concerns the behaviour of L-functions and their zeros. These functions also encode deep information concerning prime numbers. I am interested in the interplay between prime numbers and L-functions. In addition, a large part of my research concerns multiplicative functions. These functions are intimately related to both L-functions and primes. Questions concerning the location of zeros of an L-function or the size of an L-function can often be interpreted in terms of a multiplicative function. Therefore I shall investigate the finer behaviour of certain multiplicative functions. In summary, I propose to study L-functions by using tools involving prime numbers and multiplicative functions and on the other hand, I will study primes via properties of L-functions and multiplicative functions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, Nathan其他文献
Percutaneous reduction and fixation of low energy Lisfranc injuries results in better outcome compared to open reduction and internal fixation: Results from a matched case-control study with minimum 12 months follow up
- DOI:
10.1016/j.injury.2020.10.081 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Coffee Consumption and Periodontal Disease in Males
- DOI:
10.1902/jop.2013.130179 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:4.3
- 作者:
Ng, Nathan;Kaye, Elizabeth Krall;Garcia, Raul I. - 通讯作者:
Garcia, Raul I.
Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis.
- DOI:
10.1007/s00167-021-06464-4 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.8
- 作者:
Zhang, Junren;Ndou, Wofhatwa Solomon;Ng, Nathan;Gaston, Paul;Simpson, Philip M.;Macpherson, Gavin J.;Patton, James T.;Clement, Nicholas D. - 通讯作者:
Clement, Nicholas D.
BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes.
- DOI:
10.1126/sciadv.abq7240 - 发表时间:
2022-11-18 - 期刊:
- 影响因子:13.6
- 作者:
Takahashi, Hiroyuki;Kuhtreiber, Willem M.;Keefe, Ryan C.;Lee, Amanda H.;Aristarkhova, Anna;Dias, Hans F.;Ng, Nathan;Nelson, Kacie J.;Bien, Stephanie;Scheffey, Danielle;Faustman, Denise L. - 通讯作者:
Faustman, Denise L.
Rates of Displacement and Patient-Reported Outcomes Following Conservative Treatment of Minimally Displaced Lisfranc Injury
- DOI:
10.1177/1071100719895482 - 发表时间:
2019-12-17 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Ng, Nathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, Nathan', 18)}}的其他基金
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributions of prime numbers and zeros of L-functions
L 函数的素数和零点的分布
- 批准号:
250190-2006 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributions of prime numbers and zeros of L-functions
L 函数的素数和零点的分布
- 批准号:
250190-2006 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributions of prime numbers and zeros of L-functions
L 函数的素数和零点的分布
- 批准号:
250190-2006 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distributions of prime numbers and zeros of L-functions
L 函数的素数和零点的分布
- 批准号:
250190-2006 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and arithmetic functions
素数和算术函数
- 批准号:
354558-2007 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
University Undergraduate Student Research Awards