Zeros of L-functions and applications

L-函数的零点及其应用

基本信息

  • 批准号:
    RGPIN-2015-05972
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Analytic number theory is the branch of number theory that studies the natural numbers {1,2,3,4,...} and the prime numbers {2,3,5,7,.} via analysis and complex analysis. Prime numbers have been studied for thousands of years, by all civilizations. Prime numbers are the building blocks of all natural numbers, since any natural number factors into a product  of primes. For instance, 100=2*2*5*5. Despite their simple definition, their occurrence among the other integers remains mysterious and the object of important conjectures in mathematics.  In the last century, prime numbers have become very important for governments and industry. RSA is a method used in internet transactions for sending secret messages securely. This method works because it is extremely difficult to factor a large integer into its prime factors. Analytic number theory arose after publications of Dirichlet in 1837 and Riemann in 1859. These authors showed that prime numbers can be studied via certain complex functions, called L-functions. A very special L-function is the Riemann zeta function. It may be written as an infinite sum of the form 1+1/2^s+1/3^s+..where s is a complex number. An L-function is an similarly defined isum. Both Dirichlet and Riemann realized that L-functions could be used to study prime numbers. Dirichlet showed that there are infinitely many primes having certain special patterns and Riemann showed that their exist formulae for primes in terms of zeros of the zeta function.***Another key advance is due to H. L. Montgomery. In the 1970's he made the fundamental discovery that the zeros of the Riemann zeta function behave like the eigenvalues of large random matrices. He discovered that the statistics of the zeros of the Riemann zeta function are essentially the same as the statistics of the eigenvalues of a large collection of random matrices. He learned of this link from Freeman Dyson, one of the world's leading physicists. In the 1950's, Dyson and other theoretical physicists had been modelling energy levels in quantum chaos by the eigenvalues of large random matrices. ***A third central idea is the combinatorial/sieve method.  This was invented by Erastosthenes and further developed by Brun, Selberg, Rosser, and Bombieri. This methods uses combinatorics to study prime numbers and recently has become very efficient in detecting gaps between primes.  ****My research lies at the interface of the ideas of Dirichlet/Riemann, Montgomery and the sieve method. I propose to study statistical properties of the zeros of L-functions via explicit formula methods. I wish to show there are simple zeros of L-functions, that there are small gaps between zeros of the zeta function, and that on average the zeros of L-functions do not satisfy linear relations. I wish to investigate the connection between zeros of L-functions and the distribution of primes counting sums and related sums. ********
Analytic number theory is the branch of number theory that studies the natural numbers {1,2,3,4,...} and the prime numbers {2,3,5,7,.} via analysis and complex analysis. Prime numbers have been studied for thousands of years, by all civilizations. Prime numbers are the building blocks of all natural numbers, since any natural number factors into a product  of primes. For instance, 100=2*2*5*5. Despite their simple definition, their occurrence among the other integers remains mysterious and the object of important conjectures in mathematics.  In the last century, prime numbers have become very important for governments and industry. RSA is a method used in internet transactions for sending secret messages securely. This method works because it is extremely difficult to factor a large integer into its prime factors. Analytic number theory arose after publications of Dirichlet in 1837 and Riemann in 1859. These authors showed that prime numbers can be studied via certain complex functions, called L-functions. A very special L-function is the Riemann zeta function. It may be written as an infinite sum of the form 1+1/2^s+1/3^s+..where s is a complex number. An L-function is an similarly defined isum. Both Dirichlet and Riemann realized that L-functions could be used to study prime numbers. Dirichlet showed that there are infinitely many primes having certain special patterns and Riemann showed that their exist formulae for primes in terms of zeros of the zeta function.***Another key advance is due to H. L. Montgomery. In the 1970's he made the fundamental discovery that the zeros of the Riemann zeta function behave like the eigenvalues of large random matrices. He discovered that the statistics of the zeros of the Riemann zeta function are essentially the same as the statistics of the eigenvalues of a large collection of random matrices. He learned of this link from Freeman Dyson, one of the world's leading physicists. In the 1950's, Dyson and other theoretical physicists had been modelling energy levels in quantum chaos by the eigenvalues of large random matrices. ***A third central idea is the combinatorial/sieve method.  This was invented by Erastosthenes and further developed by Brun, Selberg, Rosser, and Bombieri. This methods uses combinatorics to study prime numbers and recently has become very efficient in detecting gaps between primes.  ****My research lies at the interface of the ideas of Dirichlet/Riemann, Montgomery and the sieve method. I propose to study statistical properties of the zeros of L-functions via explicit formula methods. I wish to show there are simple zeros of L-functions, that there are small gaps between zeros of the zeta function, and that on average the zeros of L-functions do not satisfy linear relations. I wish to investigate the connection between zeros of L-functions and the distribution of primes counting sums and related sums. ********

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ng, Nathan其他文献

Coffee Consumption and Periodontal Disease in Males
  • DOI:
    10.1902/jop.2013.130179
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ng, Nathan;Kaye, Elizabeth Krall;Garcia, Raul I.
  • 通讯作者:
    Garcia, Raul I.
Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis.
  • DOI:
    10.1007/s00167-021-06464-4
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhang, Junren;Ndou, Wofhatwa Solomon;Ng, Nathan;Gaston, Paul;Simpson, Philip M.;Macpherson, Gavin J.;Patton, James T.;Clement, Nicholas D.
  • 通讯作者:
    Clement, Nicholas D.
BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes.
  • DOI:
    10.1126/sciadv.abq7240
  • 发表时间:
    2022-11-18
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Takahashi, Hiroyuki;Kuhtreiber, Willem M.;Keefe, Ryan C.;Lee, Amanda H.;Aristarkhova, Anna;Dias, Hans F.;Ng, Nathan;Nelson, Kacie J.;Bien, Stephanie;Scheffey, Danielle;Faustman, Denise L.
  • 通讯作者:
    Faustman, Denise L.
Rates of Displacement and Patient-Reported Outcomes Following Conservative Treatment of Minimally Displaced Lisfranc Injury
  • DOI:
    10.1177/1071100719895482
  • 发表时间:
    2019-12-17
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Pengchi;Ng, Nathan;Amin, Anish K.
  • 通讯作者:
    Amin, Anish K.

Ng, Nathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ng, Nathan', 18)}}的其他基金

Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
  • 批准号:
    RGPIN-2020-06032
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
  • 批准号:
    RGPIN-2020-06032
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
  • 批准号:
    RGPIN-2020-06032
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
  • 批准号:
    RGPIN-2015-05972
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
  • 批准号:
    RGPIN-2015-05972
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
  • 批准号:
    RGPIN-2015-05972
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
  • 批准号:
    RGPIN-2015-05972
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
  • 批准号:
    312430-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
  • 批准号:
    312430-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
  • 批准号:
    312430-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

车载中央计算平台软件框架及泊车功能研发与产业化应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
渝产滇重楼复合功能菌的研发与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
仿苍耳倒钩样结构复合硒纳米颗粒功能化钛表面诱导软组织封闭的应用基础研究
  • 批准号:
    JCZRYB202500815
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AIGC技术的服装设计创新与应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
食用菌功能活性食品配料绿色制造关键技术研发与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于铂基纳米酶和多功能分子探针的电化学发光生物传感技术在碳青霉烯耐药肺炎克雷伯菌检测中的应用研究
  • 批准号:
    KLY25H200014
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
实施科学视角下脓毒症患者早期 肺康复流程单的设计与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脓毒症致多器官功能障碍病原体快速检测和预警体系建立的关键技术研究与应用
  • 批准号:
    2025JJ90185
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
丝瓜耐褐变主效基因LcRb1的克隆、功能解析与MAS应用
  • 批准号:
    2025JJ50131
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向湖湘织锦工艺传承的数字化设计与智造技术研究及应用示范
  • 批准号:
    2025JK2047
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Functions of chromatin remodeler Chd7 in retinal cell development
染色质重塑蛋白 Chd7 在视网膜细胞发育中的功能
  • 批准号:
    10675851
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Animal Models Core
动物模型核心
  • 批准号:
    10628214
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Bone Marrow Functions of Novel Pro-Resolving Mediators
新型亲解决介质的骨髓功能
  • 批准号:
    10852343
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Realizations and practical applications of quantum statistical machine learning theory with navigation functions
具有导航功能的量子统计机器学习理论的实现与实际应用
  • 批准号:
    22H03656
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-canonical functions of neutrophils
中性粒细胞的非典型功能
  • 批准号:
    10521656
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Zeta functions associated with discrete systems and its applications
离散系统相关的 Zeta 函数及其应用
  • 批准号:
    22K03262
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Progenitors, Mechanisms of Differentiation, and Functions of Lung M Cells
肺 M 细胞的祖细胞、分化机制和功能
  • 批准号:
    10673927
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Mechanisms and functions of fatty acid oxidation in T cell differentiation
T细胞分化中脂肪酸氧化的机制和功能
  • 批准号:
    10540296
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了