Zeros of L-functions and applications
L-函数的零点及其应用
基本信息
- 批准号:RGPIN-2015-05972
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analytic number theory is the branch of number theory that studies the natural numbers {1,2,3,4,...} and the prime numbers {2,3,5,7,.} via analysis and complex analysis. Prime numbers have been studied for thousands of years, by all civilizations. Prime numbers are the building blocks of all natural numbers, since any natural number factors into a product of primes. For instance, 100=2*2*5*5. Despite their simple definition, their occurrence among the other integers remains mysterious and the object of important conjectures in mathematics. In the last century, prime numbers have become very important for governments and industry. RSA is a method used in internet transactions for sending secret messages securely. This method works because it is extremely difficult to factor a large integer into its prime factors. Analytic number theory arose after publications of Dirichlet in 1837 and Riemann in 1859. These authors showed that prime numbers can be studied via certain complex functions, called L-functions. A very special L-function is the Riemann zeta function. It may be written as an infinite sum of the form 1+1/2^s+1/3^s+..where s is a complex number. An L-function is an similarly defined isum. Both Dirichlet and Riemann realized that L-functions could be used to study prime numbers. Dirichlet showed that there are infinitely many primes having certain special patterns and Riemann showed that their exist formulae for primes in terms of zeros of the zeta function.***Another key advance is due to H. L. Montgomery. In the 1970's he made the fundamental discovery that the zeros of the Riemann zeta function behave like the eigenvalues of large random matrices. He discovered that the statistics of the zeros of the Riemann zeta function are essentially the same as the statistics of the eigenvalues of a large collection of random matrices. He learned of this link from Freeman Dyson, one of the world's leading physicists. In the 1950's, Dyson and other theoretical physicists had been modelling energy levels in quantum chaos by the eigenvalues of large random matrices. ***A third central idea is the combinatorial/sieve method. This was invented by Erastosthenes and further developed by Brun, Selberg, Rosser, and Bombieri. This methods uses combinatorics to study prime numbers and recently has become very efficient in detecting gaps between primes. ****My research lies at the interface of the ideas of Dirichlet/Riemann, Montgomery and the sieve method. I propose to study statistical properties of the zeros of L-functions via explicit formula methods. I wish to show there are simple zeros of L-functions, that there are small gaps between zeros of the zeta function, and that on average the zeros of L-functions do not satisfy linear relations. I wish to investigate the connection between zeros of L-functions and the distribution of primes counting sums and related sums. ***
解析数论是研究自然数{1,2,3,4,…}和质数{2,3,5,7,。通过分析和复分析。质数已经被所有文明研究了数千年。素数是所有自然数的基础,因为任何自然数都可以分解成素数的乘积。例如,100=2*2*5*5。尽管它们的定义很简单,但它们在其他整数中的出现仍然是神秘的,并且是数学中重要猜想的对象。在上个世纪,质数对政府和工业来说变得非常重要。RSA是一种在互联网交易中用于安全地发送秘密信息的方法。这种方法之所以有效,是因为将一个大整数分解成它的质因数是极其困难的。解析数论产生于1837年狄利克雷和1859年黎曼的论文发表之后。这些作者表明,素数可以通过某些称为l函数的复函数来研究。一个非常特殊的l函数是黎曼函数。它可以写成1+1/2^s+1/3^s+。其中s是复数。l函数是一个类似定义的等和。狄利克雷和黎曼都意识到l函数可以用来研究素数。狄利克雷证明了有无限多个素数具有一定的特殊模式,黎曼则证明了存在以零点表示的素数公式。***另一项关键的进展要归功于h·l·蒙哥马利。在20世纪70年代,他做出了根本性的发现黎曼ζ函数的零点表现得像大型随机矩阵的特征值。他发现黎曼ζ函数的零点统计本质上与一大组随机矩阵的特征值统计相同。他从世界领先的物理学家弗里曼·戴森那里得知了这种联系。在20世纪50年代,戴森和其他理论物理学家一直在用大随机矩阵的特征值来模拟量子混沌中的能级。第三个中心思想是组合/筛选方法。这是由埃拉斯托斯特尼发明的,并由布朗、塞尔伯格、罗塞尔和Bombieri进一步发展。这种方法使用组合学来研究素数,最近在检测素数之间的间隙方面变得非常有效。****我的研究是Dirichlet/Riemann, Montgomery和筛法思想的结合。我建议用显式公式方法研究l函数零点的统计性质。我想说明的是l函数有简单的零点,函数的零点之间有小的间隙,平均来说,l函数的零点不满足线性关系。我想研究l函数的零点与素数计数和及相关和的分布之间的联系。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, Nathan其他文献
Percutaneous reduction and fixation of low energy Lisfranc injuries results in better outcome compared to open reduction and internal fixation: Results from a matched case-control study with minimum 12 months follow up
- DOI:
10.1016/j.injury.2020.10.081 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Coffee Consumption and Periodontal Disease in Males
- DOI:
10.1902/jop.2013.130179 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:4.3
- 作者:
Ng, Nathan;Kaye, Elizabeth Krall;Garcia, Raul I. - 通讯作者:
Garcia, Raul I.
Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis.
- DOI:
10.1007/s00167-021-06464-4 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.8
- 作者:
Zhang, Junren;Ndou, Wofhatwa Solomon;Ng, Nathan;Gaston, Paul;Simpson, Philip M.;Macpherson, Gavin J.;Patton, James T.;Clement, Nicholas D. - 通讯作者:
Clement, Nicholas D.
BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes.
- DOI:
10.1126/sciadv.abq7240 - 发表时间:
2022-11-18 - 期刊:
- 影响因子:13.6
- 作者:
Takahashi, Hiroyuki;Kuhtreiber, Willem M.;Keefe, Ryan C.;Lee, Amanda H.;Aristarkhova, Anna;Dias, Hans F.;Ng, Nathan;Nelson, Kacie J.;Bien, Stephanie;Scheffey, Danielle;Faustman, Denise L. - 通讯作者:
Faustman, Denise L.
Rates of Displacement and Patient-Reported Outcomes Following Conservative Treatment of Minimally Displaced Lisfranc Injury
- DOI:
10.1177/1071100719895482 - 发表时间:
2019-12-17 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Ng, Nathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, Nathan', 18)}}的其他基金
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Functions of chromatin remodeler Chd7 in retinal cell development
染色质重塑蛋白 Chd7 在视网膜细胞发育中的功能
- 批准号:
10675851 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Bone Marrow Functions of Novel Pro-Resolving Mediators
新型亲解决介质的骨髓功能
- 批准号:
10852343 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Realizations and practical applications of quantum statistical machine learning theory with navigation functions
具有导航功能的量子统计机器学习理论的实现与实际应用
- 批准号:
22H03656 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Zeta functions associated with discrete systems and its applications
离散系统相关的 Zeta 函数及其应用
- 批准号:
22K03262 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Progenitors, Mechanisms of Differentiation, and Functions of Lung M Cells
肺 M 细胞的祖细胞、分化机制和功能
- 批准号:
10673927 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Mechanisms and functions of fatty acid oxidation in T cell differentiation
T细胞分化中脂肪酸氧化的机制和功能
- 批准号:
10540296 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别: