Nonlinear eigenvalue problems
非线性特征值问题
基本信息
- 批准号:388841-2010
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Postdoctoral Fellowships
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cowan, Craig其他文献
Cowan, Craig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cowan, Craig', 18)}}的其他基金
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear eigenvalue problems
非线性特征值问题
- 批准号:
388841-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Postdoctoral Fellowships
Nonlinear eigenvalue problems
非线性特征值问题
- 批准号:
388841-2010 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Postdoctoral Fellowships
相似海外基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Theory and Algorithms for Eigenvector-Dependent Nonlinear Eigenvalue Problems
特征向量相关的非线性特征值问题的理论和算法
- 批准号:
2110731 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
- 批准号:
19K03591 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1812927 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1812695 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1813480 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Algorithms for Large-Scale Nonlinear Eigenvalue Problems: Interpolation, Stability, Transient Dynamics
大规模非线性特征值问题的算法:插值、稳定性、瞬态动力学
- 批准号:
1720257 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
New development of the nonlinear elliptic eigenvalue probelms and inverse bifurcation problems
非线性椭圆特征值问题与逆分岔问题的新进展
- 批准号:
17K05330 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Verified numerical computation for solution to nonlinear eigenvalue problems arising from delay differential equation
时滞微分方程产生的非线性特征值问题的数值计算验证
- 批准号:
16K05270 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant