Analysis of Mathematical models for the ocean, atmospherics sciences and optics.

海洋、大气科学和光学数学模型分析。

基本信息

  • 批准号:
    RGPIN-2014-03628
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This project concerns the analysis of Partial Differential Equations arising from quantum mechanics, geometric optics and fluid mechanic. More specifically, it focuses on the one hand on, the Nonlinear Schrödinger and Nonlinear Wave equations (as models for dispersive equations), and on the other hand on, the Navier-Stokes, Boussinesq, the primitive equations and related fluid models.Although the modeling, physical and the computational parts were very well developed for fluid models, the mathematical study did not seem to follow the same stream of progress. Meanwhile and during the last two decades, a tremendous progress has been made in the analysis of dispersive partial differential equations. So that comes the natural question on how one can use and take advantage of those new techniques and tools to further analyze the partial differential equations coming from fluid dynamic. One can already observe the beginning of this in several recent attempts. So the general purpose of this project is to bring together ideas and techniques from these seemingly different kinds of Analysis of PDEs in order to make progress on the mathematical understanding of turbulence and many other relevant physical phenomena.
本项目涉及量子力学、几何光学和流体力学中产生的偏微分方程的分析。更具体地说,它侧重于一方面,非线性Schrödinger和非线性波动方程(作为色散方程的模型),另一方面,Navier-Stokes, Boussinesq,原始方程和相关的流体模型。尽管流体模型的建模、物理和计算部分发展得非常好,但数学研究似乎没有遵循同样的进展。与此同时,在过去的二十年中,色散偏微分方程的分析取得了巨大的进展。这就引出了一个很自然的问题如何利用这些新技术和工具来进一步分析来自流体动力学的偏微分方程。在最近的几次尝试中,我们已经可以看到这种趋势的开端。因此,这个项目的总体目的是将这些看似不同的偏微分方程分析的思想和技术结合起来,以便在对湍流和许多其他相关物理现象的数学理解上取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim, Slim其他文献

A Derivation of the Magnetohydrodynamic System from Navier-Stokes-Maxwell Systems
On singularity formation for the two-dimensional unsteady Prandtl system around the axis
绕轴二维非定常普朗特系统奇点形成
Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation
  • DOI:
    10.1016/j.jde.2021.03.037
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ibrahim, Slim;Lin, Quyuan;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.
Finite-time singularity formation for an active scalar equation
主动标量方程的有限时间奇点形成
  • DOI:
    10.1088/1361-6544/ac0231
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Elgindi, Tarek;Ibrahim, Slim;Shen, Shengyi
  • 通讯作者:
    Shen, Shengyi
Finite-Time Blowup for the Inviscid Primitive Equations of Oceanic and Atmospheric Dynamics
  • DOI:
    10.1007/s00220-015-2365-1
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cao, Chongsheng;Ibrahim, Slim;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.

Ibrahim, Slim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim, Slim', 18)}}的其他基金

Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
  • 批准号:
    10729420
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
  • 批准号:
    2206241
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150947
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2022-05067
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150945
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Global analysis of mathematical models with conservation law by semi-analytic methods using the elliptic functions
使用椭圆函数的半解析方法对具有守恒定律的数学模型进行全局分析
  • 批准号:
    22K13962
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Symmetry methods and their applications to the analysis of modern mathematical models
对称方法及其在现代数学模型分析中的应用
  • 批准号:
    RGPIN-2019-05570
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Models in Mathematical Biology and of Sign Pattern Matrices
数学生物学模型和符号模式矩阵分析
  • 批准号:
    RGPIN-2016-03677
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Design, analysis, and computation of mathematical models for lithium-ion batteries
锂离子电池数学模型的设计、分析与计算
  • 批准号:
    RGPIN-2019-06337
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了