Integrated nanophotonics: multiscale integration of engineered nanostructures in photonic crystal architectures
集成纳米光子学:光子晶体结构中工程纳米结构的多尺度集成
基本信息
- 批准号:327680-2012
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consumer demand for novel information and communications technologies with increasingly sophisticated applications continues to drive the semiconductor industry to achieve ever smaller and faster devices. New ways of sustaining this growth in technology are being sought, and promising approaches are nearing commercial realization. This growth increasingly requires moving immense quantities of information extremely rapidly - between users across vast distances, within devices from the core to peripherals, at the component level from chip to chip, or even on the chip. About 2.5% of our global energy consumption is now dedicated to this task, and this fraction is growing rapidly. The problems of heat and power consumption can no longer be solved at the purely electronic level. Over long distances, we now rely on optical solutions. This proposal brings the optical solution down to the chip level. With my team of graduate students and colleagues, I will design and build a fundamentally new kind of ultra-small laser for eventual seamless integration with the electronic architecture of current and future generations of computer chips. We will use engineered materials called nanowires as the optically active part (the "gain") of our microlaser. This is the part with the potential for electronic integration. We will achieve very low power lasing by encasing the nanowires in a material called a photonic crystal (the "cavity"). This is an engineered material that manipulates and controls the laser system's optical response by either forbidding or allowing light to move in certain ways. The laser is extremely small because photonic crystals work at sizes of only a few optical wavelengths, the fundamental limit to tailoring the flow of light. By independently engineering the materials that realize optical gain and cavity response, we have bypassed a fundamental manufacturing constraint of contemporary approaches to solid state microlasing. We will focus on realizing lasing in photonic crystal architectures, and then work toward achieving electronic integration. Because this integration will be solely through the nanowires, we anticipate that it will be far faster and have much lower power requirements than contemporary approaches.
消费者对具有日益复杂的应用的新型信息和通信技术的需求继续推动半导体行业实现更小和更快的设备。人们正在寻找维持这种技术增长的新方法,有前途的方法即将实现商业化。这种增长越来越需要以极快的速度传输大量信息--在用户之间、在设备内部、从核心到外围设备、从芯片到芯片甚至在芯片上。目前,全球约2.5%的能源消耗用于这一任务,而且这一比例还在迅速增长。热量和功耗的问题不再能在纯电子层面上解决。在长距离通信中,我们现在依赖于光学解决方案。该方案将光学解决方案降低到芯片级。与我的研究生和同事团队一起,我将设计和制造一种全新的超小型激光器,最终与当前和未来几代计算机芯片的电子架构无缝集成。我们将使用被称为纳米线的工程材料作为微激光器的光学活性部分(“增益”)。这是具有电子集成潜力的部分。我们将通过将纳米线包裹在一种称为光子晶体的材料(“腔”)中来实现非常低的功率激光。这是一种工程材料,通过禁止或允许光以某些方式移动来操纵和控制激光系统的光学响应。激光器非常小,因为光子晶体的工作尺寸只有几个光波长,这是调整光流动的基本限制。通过独立设计实现光学增益和腔响应的材料,我们绕过了当代固态微激光方法的基本制造限制。我们将专注于在光子晶体架构中实现激光,然后致力于实现电子集成。因为这种集成将完全通过纳米线,我们预计它将比当代方法快得多,功耗要求也低得多。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schriemer, Henry其他文献
Enhanced Efficiencies for High-Concentration, Multijunction PV Systems by Optimizing Grid Spacing under Nonuniform Illumination
- DOI:
10.1155/2014/582083 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.2
- 作者:
Sharma, Pratibha;Walker, Alex W.;Schriemer, Henry - 通讯作者:
Schriemer, Henry
An energy internet DERMS platform using a multi-level Stackelberg game
- DOI:
10.1016/j.scs.2020.102262 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:11.7
- 作者:
Fattahi, Javad;Wright, David;Schriemer, Henry - 通讯作者:
Schriemer, Henry
Schriemer, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Schriemer, Henry', 18)}}的其他基金
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative Research and Development Grants
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative Research and Development Grants
AMP-STOR: Advanced module-level power electronics with battery STORage******
AMP-STOR:具有电池存储功能的高级模块级电力电子器件******
- 批准号:
537242-2018 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Engage Grants Program
Ultra-Low Power Integrated Microlasers for Optical Interconnect Technologies
用于光互连技术的超低功率集成微型激光器
- 批准号:
327680-2013 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative Research and Development Grants
Ultra-Low Power Integrated Microlasers for Optical Interconnect Technologies
用于光互连技术的超低功率集成微型激光器
- 批准号:
327680-2013 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
- 批准号:
FT220100053 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
ARC Future Fellowships
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
- 批准号:
2244031 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
- 批准号:
2328540 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
- 批准号:
545932-2020 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
- 批准号:
22H00298 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10509318 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
- 批准号:
RGPIN-2020-04069 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Scalable Integrated Nanophotonics with Subwavelength Gratings
职业:具有亚波长光栅的可扩展集成纳米光子学
- 批准号:
2144568 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant