High performance parallel preconditioning and linear equation solver for CFD applications
适用于 CFD 应用的高性能并行预处理和线性方程求解器
基本信息
- 批准号:460872-2013
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational fluid dynamics (CFD) has proved to be an important enabling technology in many areas of science and engineering. Its relative maturity and the widespread successes of its application have been driven over the past 10--15 years by significant advances in both numerical methods for partial differential equations and the rapid increase in parallel high-performance computing (HPC) systems. Nevertheless, in order to exploit fully current and future parallel computing systems and enable the more routine solution of fluid flows for practical engineering applications, further advances in numerical methods and parallel algorithm design are generally needed. he goal of the proposed project is to improve on the existing and/or to develop a new high performance parallel preconditioner/linear equation iterative solver for use in the solution of typical linear systems produced by the temporal and spatial discretization schemes of the NIECE CFD solver and software package developed by MAYA Heat Transfer Technologies Ltd. (MAYA). The improved and/or new iterative solver should provide more rapid convergence and be more robust for the flow problems of interest, including solution of problem with meshes having high aspect ratios as frequently encountered in the prediction of high-Reynold-number boundary-layer flows. The improved and more robust parallel iterative solver will be implemented and integrated within NIECE for subsequent release.
计算流体动力学(CFD)已被证明是许多科学和工程领域的重要技术。 在过去的10- 15年里,偏微分方程数值方法的重大进展和并行高性能计算(HPC)系统的快速增长推动了它的相对成熟和应用的广泛成功。 然而,为了充分利用当前和未来的并行计算系统,并使更多的日常解决方案的流体流动的实际工程应用中,进一步的进步,数值方法和并行算法的设计通常是必要的。 该项目的目标是改进现有的和/或开发一种新的高性能并行预处理器/线性方程迭代求解器,用于求解由MAYA传热技术有限公司(MAYA)开发的NIECE CFD求解器和软件包的时间和空间离散方案产生的典型线性系统。 改进的和/或新的迭代求解器应该提供更快的收敛,并且对于感兴趣的流动问题更鲁棒,包括在预测高雷诺数边界层流时经常遇到的具有高纵横比的网格的问题的解决方案。改进的、更强大的并行迭代求解器将在NIECE中实现和集成,以供后续发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Groth, Clinton其他文献
Groth, Clinton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Groth, Clinton', 18)}}的其他基金
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
DGDND-2019-06758 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
DGDND-2019-06758 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
DGDND-2019-06758 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
- 批准号:
RGPIN-2014-04583 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
- 批准号:
RGPIN-2014-04583 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
- 批准号:
462053-2014 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Parallel Nonlinear Preconditioning Algorithms and Applications in Biomechanics
并行非线性预处理算法及其在生物力学中的应用
- 批准号:
1720366 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Multi-level preconditioning for a parallel Newton-Krylov-Schur algorithm for the compressible Navier-Stokes equations
可压缩纳维-斯托克斯方程的并行 Newton-Krylov-Schur 算法的多级预处理
- 批准号:
409437-2011 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Nonlinear Preconditioning Techniques for Coupled Multi-physics Problems on Massively Parallel Computers
大规模并行计算机上耦合多物理问题的非线性预处理技术
- 批准号:
0913089 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Unstructured Multi-Grid method and the efficient implementation technique on parallel machines
非结构化多重网格方法及并行机高效实现技术
- 批准号:
15607005 - 财政年份:2003
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constraction of the lattice gauge computation tools for large scale cluster computars
大规模集群计算机格子规范计算工具的构建
- 批准号:
15540136 - 财政年份:2003
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetical development of fast numerical methods for solving large-scale linear systems which arise g from the field of computational science and engineerin
计算科学与工程领域兴起的用于求解大规模线性系统的快速数值方法的综合发展
- 批准号:
15360042 - 财政年份:2003
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Vibration Analysis using Parallel Computing for Large Ship Structures
大型船舶结构并行计算振动分析研究
- 批准号:
14550862 - 财政年份:2002
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ALGORITHMS: New Concept and Parallel Algorithms for Robust Preconditioning in Large Scale Parallel Matrix Computation
算法:大规模并行矩阵计算中鲁棒预处理的新概念和并行算法
- 批准号:
0202934 - 财政年份:2002
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Parallel Implementation of Discretization Methods for Nonstructured Meshes on Distributed Shared Memory Architectures
分布式共享内存架构上非结构化网格离散化方法的并行实现
- 批准号:
13480080 - 财政年份:2001
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)