Semiparametric Analysis of Big Censored Data
大删失数据的半参数分析
基本信息
- 批准号:10391489
- 负责人:
- 金额:$ 48.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-21 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAlgorithmsBig DataBiomedical ResearchCardiovascular DiseasesCessation of lifeCharacteristicsChronic DiseaseCloud ComputingCommunicationComputer softwareCountryCox ModelsCox Proportional Hazards ModelsDataData SecurityData SetDimensionsDiseaseDocumentationEnvironmentEventFundingGeneticGoalsIndividualInfrastructureLifeMalignant NeoplasmsMathematicsMaximum Likelihood EstimateMemoryMethodsModelingModernizationModificationNational Heart, Lung, and Blood InstitutePerformanceProcessPropertyProportional Hazards ModelsPublic HealthRandom AllocationResearchResearch Project GrantsSavingsSchemeSurvival AnalysisTestingTimeTrans-Omics for Precision MedicineUnited StatesUpdateWorkbasebig biomedical databiobankcluster computingexpectationgenome-wide analysishigh dimensionalityinnovationinterestmultimodal datanovelopen sourceparallel computerprecision medicinepreconditioningprematurepreventprogramssemiparametricsimulationsoundstatisticstheoriestooluser-friendly
项目摘要
Project Summary
The broad, long-term objectives of this project are to develop semiparametric regression methods for analyzing
censored data, which are commonly encountered in biomedical research on chronic diseases. This renewal
application is focused on addressing the computational challenges in the analysis of big data involving hun-
dreds of thousands to tens of millions of individuals with thousands to tens of millions of variables. The specific
aims are to develop: (1) a communication-efficient, distributed boosting algorithm based on semiparametric effi-
cient score functions for fitting the Cox proportional hazards model to a wide variety of big censored data; (2) a
communication-efficient, distributed boosting algorithm that embeds a random feature-set selection scheme into
variable selection in high-dimensional settings; (3) a communication-efficient, distributed boosting algorithm for
fitting a Cox model with latent factors to multiple types of high-dimensional features with missing values; and (4)
a distributed EM algorithm that incorporates both the preconditioned conjugate-gradient method for matrix inver-
sion and a novel modification of the Laplace approximation to numerical integration for fitting a random-effect Cox
model with a large number of genetically related individuals. Each of these aims addresses important new chal-
lenges arising from today's big biomedical studies. The proposed methods and algorithms are based on likelihood
and other sound statistical principles. The desired asymptotic properties of the estimators will be established rig-
orously through innovative use of modern empirical process theory and other advanced mathematical tools. The
proposed methods and algorithms will be evaluated extensively through simulation studies mimicking real data
and tested in the cloud computing environment, which provides high data security guarantees and scalable com-
puting infrastructures. In addition, the methods and algorithms will be applied to our ongoing biomedical studies,
including the NHLBI Trans-Omics for Precision Medicine program and the UK Biobank. Finally, efficient, reliable,
and user-friendly open-source software with proper documentation will be produced. The overall impact of the
proposed work will be to create new paradigms for survival analysis, advance biomedical research in the United
States and other countries, and accelerate the search for effective strategies to prevent and treat cardiovascular
diseases, cancers, AIDS, and other diseases of utmost importance to global public health.
项目摘要
该项目的广泛的长期目标是开发半参数回归方法,用于分析
删失数据,这是在慢性疾病的生物医学研究中经常遇到的。此续订
应用程序的重点是解决涉及匈奴的大数据分析中的计算挑战,
数千到数千万的个体,数千到数千万的变量。规格
目标是开发:(1)基于半参数效率的通信效率,分布式提升算法,
用于将考克斯比例风险模型拟合到各种大删失数据的得分函数;(2)a
通信效率高的分布式增强算法,该算法将随机特征集选择方案嵌入到
高维环境中的变量选择;(3)通信效率,分布式提升算法,
将具有潜在因子的考克斯模型拟合到具有缺失值的多种类型的高维特征;以及(4)
一种分布式EM算法,该算法结合了用于矩阵求逆的预条件共轭梯度法,
数值积分的拉普拉斯近似的一种新的锡永和随机效应考克斯的拟合
有大量基因相关个体的模型。每一个目标都涉及到重要的新挑战,
今天的大型生物医学研究所产生的问题。所提出的方法和算法是基于可能性的
和其他合理的统计原则。所需的渐近性质的估计将建立钻机-
通过创新性地使用现代经验过程理论和其他先进的数学工具。的
我们将通过模拟真实的数据,对提出的方法和算法进行广泛的评估
并在云计算环境下进行了测试,提供了高数据安全保障和可扩展的COM,
建设基础设施。此外,这些方法和算法将应用于我们正在进行的生物医学研究,
包括NHLBI的Trans-Omics for Precision Medicine项目和英国生物库。最后,高效,可靠,
并将制作具有适当文档的方便用户的开放源码软件。的总体影响
拟议的工作将是为生存分析创造新的范例,推进美国的生物医学研究,
美国和其他国家,并加快寻找有效的战略,以预防和治疗心血管疾病
疾病、癌症、艾滋病和其他对全球公共卫生至关重要的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANYU LIN其他文献
DANYU LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANYU LIN', 18)}}的其他基金
Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
- 批准号:
8794728 - 财政年份:2010
- 资助金额:
$ 48.22万 - 项目类别:
Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
- 批准号:
7786682 - 财政年份:2010
- 资助金额:
$ 48.22万 - 项目类别:
Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
- 批准号:
10329975 - 财政年份:2000
- 资助金额:
$ 48.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48.22万 - 项目类别:
Research Grant