Suberin: From Genes to Function

木栓质:从基因到功能

基本信息

  • 批准号:
    157930-2012
  • 负责人:
  • 金额:
    $ 4.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Plants protect themselves from the environment by coating their surfaces with water resilient materials. For example, a waxy cuticle that repels water covers leaves and needles and helps prevent fungi and bacteria from accessing the inner tissue. Similarly, trees form a thick bark, the cells of which are encrusted with a water resilient material named suberin. Suberin is also formed on the surfaces of roots and tubers, in the epidermis cells, where it helps maintain water balance and acts as a physical barrier to soil-borne disease organisms. In roots, another layer of cells, called the endodermis, also contains suberin. These cells act as the last physical barrier to water, nutrients and pathogens before they can enter the vascular tissue that distributes water and nutrients throughout the plant. Because if its importance in regulating water flow and restricting pathogen spread, suberin plays a major role in drought resistance and resistance to soil-borne disease agents. Previously we have shown that the amount of suberin in soybean roots is strongly correlated with field level disease resistance. My research program focuses on understanding the formation (biosynthesis) of suberin including the ways that plants control the amount of suberin that they formed. We are currently focusing on Fatty Acid w-Hydroxylase (FAwH) genes from both Solanum tuberosum (potato, a model for suberin biosynthesis) and Glycine max (soybean, a model for the role of suberin in pathogen resistance). This represents a progression from chemical, biochemical and metabolomic approaches to include a molecular biological approach. With a better understanding of how plants control the location and amount of suberin they form, we will be able to find ways to enhance this process in key agricultural crops thereby providing plants with enhanced natural defenses.
植物通过在其表面涂上防水材料来保护自己免受环境影响。例如,叶子和针叶上覆盖着一层防水的蜡质角质层,有助于防止真菌和细菌进入内部组织。同样,树木形成厚厚的树皮,其细胞上覆盖着一种名为木栓质的防水材料。木栓质也形成于根和块茎表面的表皮细胞中,有助于维持水平衡并充当土传病害生物的物理屏障。在根中,另一层细胞,称为内皮层,也含有木栓质。这些细胞是水、养分和病原体进入维管组织之前的最后一道物理屏障,维管组织负责在整个植物中分配水和养分。因为木栓质在调节水流和限制病原体传播方面很重要,它在抗旱和抵抗土传病害方面也发挥着重要作用。之前我们已经表明,大豆根中木栓质的含量与田间抗病性密切相关。我的研究项目侧重于了解木栓质的形成(生物合成),包括植物控制其形成的木栓质数量的方式。我们目前重点研究来自 Solanum tuberosum(马铃薯,木栓质生物合成模型)和 Glycine max(大豆,木栓质在病原体抗性中作用的模型)的脂肪酸 w-羟化酶 (FAwH) 基因。这代表了从化学、生物化学和代谢组学方法到包括分子生物学方法的进步。通过更好地了解植物如何控制其形成的木栓质的位置和数量,我们将能够找到方法来增强关键农作物的这一过程,从而为植物提供增强的自然防御。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernards, Mark其他文献

Bernards, Mark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernards, Mark', 18)}}的其他基金

Suberin: Biosynthesis, Form and Function
木栓质:生物合成、形式和功能
  • 批准号:
    RGPIN-2017-04228
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Changes in ginsenosides and soil biodiversity related to management of ginseng replant disease
与人参重植病管理相关的人参皂苷和土壤生物多样性的变化
  • 批准号:
    521406-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Strategic Projects - Group
Suberin: Biosynthesis, Form and Function
木栓质:生物合成、形式和功能
  • 批准号:
    RGPIN-2017-04228
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Suberin: Biosynthesis, Form and Function
木栓质:生物合成、形式和功能
  • 批准号:
    RGPIN-2017-04228
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Changes in ginsenosides and soil biodiversity related to management of ginseng replant disease
与人参重植病管理相关的人参皂苷和土壤生物多样性的变化
  • 批准号:
    521406-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Strategic Projects - Group
Time of Flight Mass Spectrometer for GC-based analysis of small molecules
用于基于 GC 的小分子分析的飞行时间质谱仪
  • 批准号:
    RTI-2020-00251
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Research Tools and Instruments
Suberin: Biosynthesis, Form and Function
木栓质:生物合成、形式和功能
  • 批准号:
    RGPIN-2017-04228
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Changes in ginsenosides and soil biodiversity related to management of ginseng replant disease****
与人参重植病管理相关的人参皂苷和土壤生物多样性的变化****
  • 批准号:
    521406-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Strategic Projects - Group
Evaluating the additive effects of biostimulants, nitrogen and phosphorus on vegetative growth and yield in green pepper (Capsicum annuum)
评估生物刺激剂、氮和磷对青椒(Capsicum annuum)营养生长和产量的累加效应
  • 批准号:
    533322-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Engage Grants Program
Suberin: Biosynthesis, Form and Function
木栓质:生物合成、形式和功能
  • 批准号:
    RGPIN-2017-04228
  • 财政年份:
    2017
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Quantitative and function analysis platform for repetitive genes and gene isoforms in pluripotency regulation and differentiations
多能性调控和分化中重复基因和基因亚型的定量和功能分析平台
  • 批准号:
    10929710
  • 财政年份:
    2023
  • 资助金额:
    $ 4.08万
  • 项目类别:
Exploiting natural variants in potassium channel genes to understand their roles in neural function, behaviour and development
利用钾通道基因的自然变异来了解它们在神经功能、行为和发育中的作用
  • 批准号:
    2893712
  • 财政年份:
    2023
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Studentship
Elucidating the mechanisms by which ectopically expressed genes and piRNAs perturb somatic cell function when histone methylation is inappropriately regulated
阐明组蛋白甲基化调节不当时异位表达基因和 piRNA 扰乱体细胞功能的机制
  • 批准号:
    10730632
  • 财政年份:
    2023
  • 资助金额:
    $ 4.08万
  • 项目类别:
Why do multiple herbicide resistant weeds evolve? ~Endogenous Function and Regulation of Herbicide Metabolism Genes~
为什么杂草会进化出多种除草剂抗性?
  • 批准号:
    23KJ1360
  • 财政年份:
    2023
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Complete understanding of Aire function through identifying its bona fide target genes
通过识别真正的靶基因,全面了解 Aire 功能
  • 批准号:
    22H02892
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The role of autism susceptibility genes in the 16p11.2 locus on the development and function of human stem cell-derived neural cells
16p11.2位点自闭症易感基因对人类干细胞源性神经细胞发育和功能的作用
  • 批准号:
    10556400
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
Expansion of metabolic map and comprehensive annotation of genes with unknown enzyme function by next-generation metabolomic technologies
通过下一代代谢组学技术扩展代谢图谱并全面注释酶功能未知的基因
  • 批准号:
    22H01883
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating genes of unknown function required for Rickettsia parkeri infection
研究帕氏立克次体感染所需的未知功能基因
  • 批准号:
    10535336
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
Delineating the function of MHC class III genes in antigen presenting myeloid cell contribution to autoimmunity
描述 MHC III 类基因在抗原呈递骨髓细胞对自身免疫的贡献中的功能
  • 批准号:
    10429530
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
Project 1 - Genes to Function: Causal Genes and their Roles in Cardiomyocyte and Atrial Physiology
项目 1 - 发挥功能的基因:因果基因及其在心肌细胞和心房生理学中的作用
  • 批准号:
    10646358
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了