Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
基本信息
- 批准号:RGPIN-2014-04922
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the surface of medical use textiles and thermoplastic polymers is in contact with microorganisms, cells and biological systems, surface properties play an important role. Surface engineering of existing textiles and polymeric materials is an economical way to develop new materials to meet the rigorous requirements for medical applications and protection. For example, the majority of hospital privacy curtains are contaminated in the first week of use. Subsequently, healthcare workers touch curtains after hand washing, and then touch the patients. The curtains become a vehicle for hospital cross infection. A durable antimicrobial function on the surface of privacy curtains can help decrease the possibility of cross-infection in hospitals. The ultimate goal of this research is to develop novel approaches to durably and efficiently modify the surface of chemically inert polymeric materials for biomedical and medical applications with minimal impact on the physical properties. Within the previous NSERC DISCOVERY program, our research group has successfully developed a new non-destructive and effective surface modification technique for chemically inert thermoplastic polymers such as poly(ethylene terephthalate) (PET): surface modification by forming an interpenetrating network (IPN) of functional and substrate polymers. Such surface modification is durable except if the substrate polymer is dissolved or melted. This novel surface modification technique is easy-to-use, versatile (applicable on many thermoplastic polymers), has preserved mechanical strength of modified polymer substrates, and can achieve a high density of surface functional groups. Although the tensile strength of modified PET fabrics is well preserved, the flexibility of the modified substrate is compromised to a certain degree. To optimize the surface modification and minimize the negative impact on the flexibility of polymer substrates, essential for certain medical applications such as vascular grafts and wound care dressing, we propose to conduct fundamental research to characterize the interpenetrating network in a 3-dimensional fashion, to gain a deeper understanding of the process-structure-property relationship and to durably interlock the functional polymers (such as antibacterial polymers) onto thermoplastic polymers with a minimum of crosslinking. In addition, we will identify strategies to achieve more effective and selective antibacterial activity on medical textiles and implants, allowing fast inactivation of bacteria on medical textiles, and efficient and selective kill of bacteria on implants with minimum human cell toxicity. We anticipate that the proposed study will lead to a breakthrough in the science of surface modification of chemically inert thermoplastic polymers used as medical textiles, biomaterials, and medical devices. The results from this work can be used as tools for biomaterial scientists to devise next-generation biomaterials that can better meet the biological challenges at the tissue/blood–material interface and provide technical support to industries making personal protective equipment, biomaterials and medical devices. The study of strategies for achieving more effective antibacterial surfaces will lay a foundation for the fabrication of potent and selective biocidal PET and polyurethane used in privacy curtains, nurse uniforms and surgical drapes to minimize cross-infection, and in endoscopes and catheters for biofilm control. The proposed work will lead to the training of highly qualified personnel with interdisciplinary skills in Polymer Chemistry, Analytic Chemistry, Medical Textile and Biomaterial Science.
由于医用纺织品和热塑性聚合物的表面与微生物、细胞和生物系统接触,因此表面性能起着重要作用。现有纺织品和高分子材料的表面工程是开发新材料以满足医疗应用和防护的严格要求的一种经济途径。例如,大多数医院的隐私窗帘在使用的第一周就被污染了。随后,医护人员在洗手后触摸窗帘,再触摸患者。窗帘成为医院交叉感染的载体。隐私窗帘表面具有耐用的抗菌功能,有助于减少医院交叉感染的可能性。本研究的最终目标是开发新的方法,在对物理性能影响最小的情况下,持久有效地修饰生物医学和医疗应用的化学惰性聚合物材料的表面。在之前的NSERC DISCOVERY项目中,我们的研究小组已经成功地开发了一种新的非破坏性和有效的表面改性技术,用于化学惰性热塑性聚合物,如聚对苯二甲酸乙酯(PET):通过形成功能聚合物和底物聚合物的互穿网络(IPN)进行表面改性。这种表面改性是持久的,除非基材聚合物被溶解或熔化。这种新颖的表面改性技术易于使用,用途广泛(适用于许多热塑性聚合物),保留了改性聚合物基材的机械强度,并且可以实现高密度的表面官能团。虽然改性PET织物的抗拉强度得到了很好的保留,但改性基材的柔韧性在一定程度上受到了损害。为了优化表面修饰并最大限度地减少对聚合物基板灵活性的负面影响,这对于某些医疗应用(如血管移植和伤口护理敷料)至关重要,我们建议进行基础研究,以三维方式表征互穿网络。深入了解工艺-结构-性能关系,并以最小的交联将功能聚合物(如抗菌聚合物)持久地联锁在热塑性聚合物上。此外,我们将确定在医用纺织品和植入物上实现更有效和选择性抗菌活性的策略,允许医用纺织品上的细菌快速失活,并以最小的人体细胞毒性有效和选择性地杀死植入物上的细菌。我们预计,这项研究将导致化学惰性热塑性聚合物表面改性科学的突破,用于医疗纺织品,生物材料和医疗设备。这项工作的结果可以作为生物材料科学家设计下一代生物材料的工具,这些生物材料可以更好地应对组织/血液-材料界面的生物学挑战,并为个人防护装备、生物材料和医疗器械的制造行业提供技术支持。实现更有效的抗菌表面的策略研究将为制造有效和选择性的生物杀灭PET和聚氨酯奠定基础,这些生物杀灭PET和聚氨酯可用于隐私窗帘、护士制服和手术窗帘,以减少交叉感染,以及用于生物膜控制的内窥镜和导管。这项工作将培养具有高分子化学、分析化学、医用纺织和生物材料科学跨学科技能的高素质人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, Song其他文献
A Computational Biology Study on the Structure and Dynamics Determinants of Thermal Stability of the Chitosanase from Aspergillus fumigatus.
- DOI:
10.3390/ijms24076671 - 发表时间:
2023-04-03 - 期刊:
- 影响因子:5.6
- 作者:
Wang, Qian;Liu, Song;Li, Kecheng;Xing, Ronge;Chen, Xiaolin;Li, Pengcheng - 通讯作者:
Li, Pengcheng
Understanding Drug Sensitivity and Tackling Resistance in Cancer.
了解癌症的药物敏感性和应对耐药性。
- DOI:
10.1158/0008-5472.can-21-3695 - 发表时间:
2022-04-15 - 期刊:
- 影响因子:11.2
- 作者:
Tyner, Jeffrey W.;Haderk, Franziska;Kumaraswamy, Anbarasu;Baughn, Linda B.;Van Ness, Brian;Liu, Song;Marathe, Himangi;Alumkal, Joshi J.;Bivona, Trever G.;Chan, Keith Syson;Druker, Brian J.;Hutson, Alan D.;Nelson, Peter S.;Sawyers, Charles L.;Willey, Christopher D. - 通讯作者:
Willey, Christopher D.
Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice
富氢盐水通过调节内质网应激和自噬介导小鼠缺氧缺血新生儿脑损伤的神经保护作用
- DOI:
10.1016/j.brainres.2016.06.020 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:2.9
- 作者:
Bai, Xuemei;Liu, Song;Wang, Zhen - 通讯作者:
Wang, Zhen
Microenvironment-responsive Cu-phenolic networks coated nanofibrous dressing with timely macrophage phenotype transition for chronic MRSA infected wound healing.
- DOI:
10.1016/j.mtbio.2023.100788 - 发表时间:
2023-10 - 期刊:
- 影响因子:8.2
- 作者:
Xiao, Tianhua;Liu, Jiamin;Li, Yuanxin;Cai, Yu;Xing, Xudan;Shao, Ming;Zhang, Chi;Duan, Dongming;Liu, Song;Tan, Guoxin;Wang, Le;Wu, Zenghui;Gong, Zunlei;Zhou, Lei - 通讯作者:
Zhou, Lei
Nrf2 amplifies oxidative stress via induction of Klf9.
- DOI:
10.1016/j.molcel.2014.01.033 - 发表时间:
2014-03-20 - 期刊:
- 影响因子:16
- 作者:
Zucker, Shoshanna N.;Fink, Emily E.;Bagati, Archis;Mannava, Sudha;Bianchi-Smiraglia, Anna;Bogner, Paul N.;Wawrzyniak, Joseph A.;Foley, Colleen;Leonova, Katerina I.;Grimm, Melissa J.;Moparthy, Kalyana;Ionov, Yurij;Wang, Jianmin;Liu, Song;Sexton, Sandra;Kandel, Eugene S.;Bakin, Andrei V.;Zhang, Yuesheng;Kaminski, Naftali;Segal, Brahm H.;Nikiforov, Mikhail A. - 通讯作者:
Nikiforov, Mikhail A.
Liu, Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, Song', 18)}}的其他基金
Development of Functional Materials for Battling Bacterial Contamination
对抗细菌污染的功能材料的开发
- 批准号:
RGPIN-2019-06094 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Development of Functional Materials for Battling Bacterial Contamination
对抗细菌污染的功能材料的开发
- 批准号:
RGPIN-2019-06094 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Rechargeable potent antiviral facemasks with a novel quaternized N-chloramine (Lab2Market)
含有新型季铵化 N-氯胺的可充电强效抗病毒口罩 (Lab2Market)
- 批准号:
571238-2022 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Idea to Innovation
Development of Functional Materials for Battling Bacterial Contamination
对抗细菌污染的功能材料的开发
- 批准号:
RGPIN-2019-06094 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Development of Functional Materials for Battling Bacterial Contamination
对抗细菌污染的功能材料的开发
- 批准号:
RGPIN-2019-06094 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
New anti-biofilm formulations and products
新的抗生物膜配方和产品
- 批准号:
532621-2018 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Understanding and Engineering Chemically Activated Ubiquitin Ligases
了解和设计化学激活的泛素连接
- 批准号:
10713454 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Process Engineering for Advanced Chemically Bonded Ceramics (CBC)
先进化学结合陶瓷 (CBC) 的工艺工程
- 批准号:
RGPIN-2019-03898 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Process Engineering for Advanced Chemically Bonded Ceramics (CBC)
先进化学结合陶瓷 (CBC) 的工艺工程
- 批准号:
RGPIN-2019-03898 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Gene activated matrix with chemically modified miRNA and circular RNA for bone engineering
用于骨工程的具有化学修饰的 miRNA 和环状 RNA 的基因激活基质
- 批准号:
20K18729 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Process Engineering for Advanced Chemically Bonded Ceramics (CBC)
先进化学结合陶瓷 (CBC) 的工艺工程
- 批准号:
RGPIN-2019-03898 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Process Engineering for Advanced Chemically Bonded Ceramics (CBC)
先进化学结合陶瓷 (CBC) 的工艺工程
- 批准号:
RGPIN-2019-03898 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Engineering Reversible Cell-Cell Interactions with Chemically Self-Assembled CARs
利用化学自组装 CAR 设计可逆的细胞间相互作用
- 批准号:
9751255 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Surface Engineering of Chemically Inert Polymers for Medical and Biomedical Applications
用于医疗和生物医学应用的化学惰性聚合物的表面工程
- 批准号:
RGPIN-2014-04922 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual