Neuronal control of behaviour in complex sensory environments

复杂感官环境中行为的神经元控制

基本信息

  • 批准号:
    RGPIN-2014-05269
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Most animals live in complex environments that often contain conflicting information about their surroundings. Survival, therefore, depends on the ability of the nervous system to collect and process relevant information, allowing the animal to generate an appropriate behavioural response. To understand the neural control of behaviour, we must first understand how an animal orients in three-dimensional space and how kinematics of locomotory appendages are driven by relevant muscle activity, which ultimately produces forces that move the animal in its environment. To understand central mechanisms of how behaviour is produced and modified, we must study how the nervous system detects environmental cues and drives appropriate locomotory muscles. While single neurons may be suited to detect specific aspects of the environment, the combined activity of groups of neurons is crucial for detecting and deciphering complex sensory cues. Common detection schemes in animals ranging from insects to humans imply that similar fundamental processes are involved in extracting important information from the environment. By identifying mechanisms by which groups of neurons detect relevant cues from complex stimuli, it will also be possible to design better biologically-inspired artificial systems capable of adaptable, self-guided navigation. My laboratory uses insect flight as an ideal model system to address fundamental questions about physiological mechanisms that underly natural behaviour. We use techniques that include combinations of: 1) high speed video to track body and wing movements during flight, 2) electrical recordings of muscles that drive the wings, 3) single and multichannel neurophysiological recordings of single or multiple neurons involved in visual processing and 4) a virtual-reality environment to emulate real visual motion. Specifically, we study responses of identified neurons in the accessible locust nervous system to behaviourally-relevant visual cues. We are interested in how information is processed for production of flight steering manoeuvres. Flight is a complex behaviour that requires rapid detection and processing of complex sensory signals. This behaviour is also controlled by relatively few neurons, making it accessible to rigourous experimental manipulation. For example, we examine how identified visual neurons respond to multiple objects or objects which change motion trajectory, which may or may not represent a danger to the animal. Past work from our group has revealed that a single, identified neuron is able to extract information about complex object motion and that other identified neurons likely contribute to higher level processing that drives natural flight behaviour. We have also found that timing of flight muscle activity predicts wing movement and animal orientation in 3-dimensional space. Using these findings, we have developed a model for avoidance behaviour that will further refine our virtual reality system and expand our current collaborations with robotics researchers. These were the first studies to show these results and drive current hypotheses that form the basis of this proposal. By combining multichannel recordings of multiple neurons and virtual reality techniques we will further understand behavioural and multineuronal responses during presentation of realistic complex scenes that this animal would encounter in its natural environment. Thus, we will contribute to an understanding of how the nervous system detects important sensory cues and how those cues are used to generate an appropriate behavioural response. Results will be important in understanding fundamental principles of the neural control of behaviour and will be incorporated into control strategies for artificial systems.
大多数动物生活在复杂的环境中,这些环境往往包含关于周围环境的相互矛盾的信息。因此,生存取决于神经系统收集和处理相关信息的能力,使动物能够产生适当的行为反应。为了理解行为的神经控制,我们必须首先了解动物如何在三维空间中定位,以及运动附属物的运动学如何由相关的肌肉活动驱动,最终产生使动物在其环境中移动的力。为了理解行为如何产生和改变的中枢机制,我们必须研究神经系统如何检测环境线索并驱动适当的运动肌肉。虽然单个神经元可能适合于检测环境的特定方面,但神经元组的组合活动对于检测和破译复杂的感觉线索至关重要。从昆虫到人类的动物中常见的检测方案意味着从环境中提取重要信息涉及类似的基本过程。通过识别神经元群从复杂刺激中检测相关线索的机制,也有可能设计出更好的生物启发的人工系统,能够适应自我导航。我的实验室使用昆虫飞行作为一个理想的模型系统,以解决有关自然行为背后的生理机制的基本问题。我们使用的技术包括:1)高速视频跟踪飞行过程中的身体和翅膀运动,2)驱动翅膀的肌肉的电记录,3)参与视觉处理的单个或多个神经元的单通道和多通道神经生理记录,以及4)虚拟现实环境来模拟真实的视觉运动。具体来说,我们研究了识别的神经元在可访问蝗虫神经系统的行为相关的视觉线索的反应。我们感兴趣的是如何处理信息以产生飞行操纵动作。飞行是一种复杂的行为,需要快速检测和处理复杂的感觉信号。这种行为也是由相对较少的神经元控制的,这使得它可以进行严格的实验操作。例如,我们研究识别的视觉神经元如何响应多个物体或改变运动轨迹的物体,这可能会或可能不会对动物造成危险。我们小组过去的工作表明,单个已识别的神经元能够提取有关复杂物体运动的信息,而其他已识别的神经元可能有助于驱动自然飞行行为的更高级别的处理。我们还发现,飞行肌肉活动的时间预测翅膀运动和动物在三维空间中的方向。利用这些发现,我们开发了一个回避行为模型,这将进一步完善我们的虚拟现实系统,并扩大我们目前与机器人研究人员的合作。这些是第一批显示这些结果的研究,并推动了构成这一提议基础的当前假设。通过结合多个神经元和虚拟现实技术的多通道记录,我们将进一步了解行为和多神经元的反应,在现实的复杂场景,这种动物会遇到在其自然环境中的介绍。因此,我们将有助于了解神经系统如何检测重要的感官线索,以及如何使用这些线索来产生适当的行为反应。结果将是重要的,在理解神经控制的行为的基本原则,并将被纳入人工系统的控制策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gray, Jack其他文献

Gray, Jack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gray, Jack', 18)}}的其他基金

Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
  • 批准号:
    22302168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
  • 批准号:
    81070069
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
  • 批准号:
    10972233
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
  • 批准号:
    30900646
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Neuronal mechanisms of integrated flight control and goal-directed behaviour in butterfly
蝴蝶综合飞行控制和目标导向行为的神经机制
  • 批准号:
    BB/X002276/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant
Developing a viral tool for bidirectional control of neuronal activity in the mouse spinal cord
开发双向控制小鼠脊髓神经元活动的病毒工具
  • 批准号:
    449484
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship Programs
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating how neuronal circuits control behaviour
研究神经回路如何控制行为
  • 批准号:
    497483-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    University Undergraduate Student Research Awards
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Neuronal control of behaviour in complex sensory environments
复杂感官环境中行为的神经元控制
  • 批准号:
    RGPIN-2014-05269
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Control of neuronal networks and cognitive behaviour by deep brain, transcranial and optogenetic stimulation
通过深部脑、经颅和光遗传学刺激控制神经网络和认知行为
  • 批准号:
    G1002064/1
  • 财政年份:
    2011
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Fellowship
The Neuronal Encoding of Self-Motion
自我运动的神经元编码
  • 批准号:
    198522
  • 财政年份:
    2010
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Operating Grants
Neuronal control of adaptive insect flight behaviour
适应性昆虫飞行行为的神经元控制
  • 批准号:
    249937-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了