Enhanced models for large scale supply chain tactical planning problems
大规模供应链战术规划问题的增强模型
基本信息
- 批准号:RGPIN-2014-06657
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Supply chain is all about collaboration for managing the product demand smoothly. The supply chain planning becomes complex as the number of products (and thus partners) grows. Most of the difficulty in planning arises from the uncertainties in demand, supply, time, etc. The more the number of uncertain parameters, the more difficult the planning is. Natural resources based supply chains such as forest/agro product supply chain are one of such supply chains where uncertainties at all levels are high with huge number of products. To manage these uncertainties, either managers opt for high level of redundancy, that is, either buffer stocks at all levels across the supply chain or do multiple sourcing, etc. All the options come with advantages and disadvantages. Availability of multiple strategies makes decision making and supply chain planning more complex. To manage the supply chain smoothly, one of the options is to limit the number of products. However, businesses offer a portfolio of products to cater a large pool of customers. In this situation, to keep the supply chain lean, products are designed in such a way that most of the final products share lot of common components (raw material). In other words, a component can be used in many different products. There are two extremes: Designing the product specific component for each product; and designing a single universal component that can fit in every product. Both extremes have advantages and disadvantages and to balance the advantages and disadvantages associated with the both extremes, final products are segregated into different categories and each category shares the component. For instance, a roll of a specific width can be used to produce several final products. Determination of number of category and classification of products in categories is a very complex problem. In mathematical terms, the problem is known as set partition problem and in practice called the assortment problem. In supply chains we encounter numerous assortment type problems at various levels. For instance, selecting suppliers for multiple products with capacity restrictions, assigning retailers to warehouses, selecting contractors for multiple jobs with precedent constraints, resource assignments, etc. Resolving these problems are not easy due to non-linearity associated with capacity, cost and randomness. High waste and limited alternative supply (at the last moment) are very common in natural products based supply chains. Proper assortment planning is the only way to keep the supply chain smooth and operating cost minimal. In this research, our goal is to do systematic review of the relevant literature and enrich the existing knowledge by contributing novel tools to solve such complex problems. We will identify key tactical level planning problems and develop mathematical modeling based approaches. Based on the problem complexity, problem size and usage we will develop and test combination of approaches. Most effective and suitable approaches will be disseminated through publications and seminars. In particular, our main objectives are: 1) Develop and test strategies which are more suitable for supply chains under these circumstances. 2) Develop mathematical programming solution approaches which are effective and efficient in solving such complex models. 3) To develop /explore test cases for bench-marking the performance. The outcome of this research will be a set of planning tools that can help the industry in improved planning and thus more cost effective and competitive. Other outcomes of the research include training of several highly qualified personnel for research and further advancement of the field. The generated results will be shared through publications, conference presentations.
供应链是关于协作,以顺利管理产品需求。随着产品(以及合作伙伴)数量的增加,供应链规划变得复杂。计划中的大部分困难来自需求、供应、时间等方面的不确定性。不确定参数越多,规划难度越大。以自然资源为基础的供应链,如森林/农产品供应链,就是这样一个供应链,在各个层面的不确定性都很高,产品数量巨大。为了管理这些不确定性,管理者要么选择高水平的冗余,也就是说,要么缓冲供应链上所有级别的库存,要么进行多重采购,等等。所有的选择都有优点和缺点。多种策略的可用性使得决策和供应链规划变得更加复杂。为了顺利地管理供应链,其中一个选择是限制产品的数量。然而,企业提供一系列的产品来迎合大量的客户。在这种情况下,为了保持供应链的精益,产品被设计成这样一种方式,即大多数最终产品共享许多共同的组件(原材料)。换句话说,一个组件可以用于许多不同的产品。有两个极端:为每个产品设计特定于产品的组件;并设计一个单一的通用组件,可以适用于每一个产品。两种极端都有优点和缺点,为了平衡与这两种极端相关的优点和缺点,最终产品被分成不同的类别,每个类别共享组件。例如,一个特定宽度的轧辊可以用来生产几种最终产品。品类数量的确定和品类产品的分类是一个非常复杂的问题。在数学术语中,这个问题被称为集合划分问题,在实践中称为分类问题。在供应链中,我们在不同的层次上遇到了许多分类类型的问题。例如,为有容量限制的多种产品选择供应商,为仓库分配零售商,为有先例限制的多种工作选择承包商,资源分配等。由于与容量、成本和随机性相关的非线性,解决这些问题并不容易。在以天然产品为基础的供应链中,高浪费和有限的替代供应(在最后一刻)是非常常见的。正确的分类计划是保持供应链顺畅和运营成本最低的唯一途径。在本研究中,我们的目标是对相关文献进行系统的综述,并通过提供新的工具来丰富现有的知识,以解决这些复杂的问题。我们将确定关键的战术水平规划问题,并开发基于数学建模的方法。根据问题的复杂性、问题的大小和使用情况,我们将开发和测试各种方法的组合。将通过出版物和讨论会传播最有效和最适当的办法。特别是,我们的主要目标是:1)开发和测试更适合这些情况下供应链的策略。2)发展数学规划解决方法,有效和高效地解决这种复杂的模型。3)开发/探索测试用例,对性能进行基准测试。这项研究的结果将是一套规划工具,可以帮助该行业改进规划,从而提高成本效益和竞争力。这项研究的其他成果包括培训了几名高素质的研究人员,并进一步推动了该领域的发展。产生的结果将通过出版物、会议报告分享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chauhan, Satyaveer其他文献
A matheuristic method for planning railway freight transportation with hazardous materials
- DOI:
10.1016/j.jrtpm.2019.06.001 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Abuobidalla, Omar;Chen, Mingyuan;Chauhan, Satyaveer - 通讯作者:
Chauhan, Satyaveer
A column generation-based heuristic for the three-dimensional bin packing problem with rotation
- DOI:
10.1057/s41274-017-0186-7 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.6
- 作者:
Mahvash, Batoul;Awasthi, Anjali;Chauhan, Satyaveer - 通讯作者:
Chauhan, Satyaveer
Waiting-time estimation in walk-in clinics
- DOI:
10.1111/itor.12353 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.1
- 作者:
Montecinos, Julio;Ouhimmou, Mustapha;Chauhan, Satyaveer - 通讯作者:
Chauhan, Satyaveer
Chauhan, Satyaveer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chauhan, Satyaveer', 18)}}的其他基金
Approaches for supply chain planning and scheduling
供应链规划和调度的方法
- 批准号:
RGPIN-2020-06767 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approaches for supply chain planning and scheduling
供应链规划和调度的方法
- 批准号:
RGPIN-2020-06767 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Approaches for supply chain planning and scheduling
供应链规划和调度的方法
- 批准号:
RGPIN-2020-06767 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and approaches for large scale supply chain planning
大规模供应链规划的模型和方法
- 批准号:
RGPIN-2015-05689 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and approaches for large scale supply chain planning
大规模供应链规划的模型和方法
- 批准号:
RGPIN-2015-05689 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Real time analysis tools for advanced manufacturing systems
先进制造系统的实时分析工具
- 批准号:
526585-2018 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Models and approaches for large scale supply chain planning
大规模供应链规划的模型和方法
- 批准号:
RGPIN-2015-05689 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and approaches for large scale supply chain planning
大规模供应链规划的模型和方法
- 批准号:
RGPIN-2015-05689 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and approaches for large scale supply chain planning
大规模供应链规划的模型和方法
- 批准号:
RGPIN-2015-05689 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
- 批准号:
2903811 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
- 批准号:
24K07399 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
- 批准号:
BB/Y514032/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
CAREER: Regularizing Large Language Models for Safe and Reliable Program Generation
职业:规范大型语言模型以安全可靠地生成程序
- 批准号:
2340408 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Sediment connectivity in large landslides based on quality-maximized digital elevation models derived from historical aerial photography and UAV imagery
基于源自历史航空摄影和无人机图像的质量最大化数字高程模型的大型滑坡中的沉积物连通性
- 批准号:
24K04397 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)