Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
基本信息
- 批准号:RGPIN-2014-06671
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While substantial strides have been made in the development of large-scale processes to create nanomaterials, several challenges remain when trying to integrate nanoparticles with specific alignment and registration into macroscopic devices at millimeter and greater scales. This research program will focus on two long term visions, (i) developing new types of composite material “inks” compatible with commercially available 3D printers that consist of inorganic magnetic nanomaterials and polymeric scaffolds, and (ii) developing the methodology to print these nanomaterial containing “inks” into proof of principle macroscopic devices such as magnetic actuators or photonic crystals. The short-term scientific objectives of this research program will include: first, to design and synthesize inorganic superparamagnetic and ferromagnetic nanomaterials that can be incorporated, and cross-linked, into macromolecular polymeric 3D printed materials. We will draw on literature based methods, as well as those that I have developed personally while working with several types of inorganic magnetic nanomaterials during my graduate and postdoctoral training, to synthesize superparamagnetic iron oxides and ferromagnetic cobalt, iron, and iron platinum nanoparticles. Several of the existing literature methods result in aliphatic magnetic nanoparticles so we will perform the appropriate ligand exchange chemistry to produce magnetic nanoparticles with the solubility and functionality to form covalent attachment amongst nanoparticles to form ordered nanoparticle superlattice structures, or alternatively to form covalent crosslinking attachments between the nanomaterials and the polymeric scaffolding. After optimizing the nanoparticle design we will then experimentally verify the effect of superlattice size, concentration, and polymeric scaffold design parameters on the physical properties (magnetic, rheological, etc) of different nanomaterial inks. Upon developing a suitable composite “ink” we will fabricate proof-of-principle macroscale devices using a stereolithographic apparatus 3D printing approach. The first device would be to demonstrate that the composite “ink” can be used to print a single clamped cantilever shaped magnetic actuator. By controlling the type, and mass, of magnetic nanoparticles incorporated into the cantilever we should be able to demonstrate experimental control over the deflection using external magnetic forces. These experiments will be compared to simulation results obtained using COMSOL Multiphysics or ANSYS. Using similar methods we will attempt to demonstrate that printing ordered arrays of nanoparticle superlattice structures in three-dimensional polymeric matrices could be used to develop a proof of principle photonic crystal. While previous demonstrations in the literature have shown that ordered periodic arrays or chains of magnetic nanoparticles can be used to produce tunable photonic crystals this demonstration would attempt to be the first to be able to integrate the photonic crystal elements into macroscopic devices at defined locations. While these two devices would demonstrate the potential of being able to incorporate nanomaterials as functional materials for 3D printing of simple macroscopic devices they are simple demonstrations of how increasing the palette of materials useful for soft 3D printing may have the potential to significantly increase the capabilities of 3D printing technology. The proposed research program has the potential to train eleven HQP (2 PhD, 2 MEng, 7 undergraduate researchers) from all stages of education in an interdisciplinary (nanotechnology and 3D printing) area of engineering that many economists are predicting to have tremendous growth in the coming decade.
虽然在开发大规模工艺以制造纳米材料方面已经取得了重大进展,但当试图将具有特定对齐和配准的纳米颗粒整合到毫米和更大尺度的宏观器件中时,仍然存在一些挑战。该研究计划将专注于两个长期愿景,(i)开发与商用3D打印机兼容的新型复合材料“墨水”,该打印机由无机磁性纳米材料和聚合物支架组成,以及(ii)开发将这些含有“墨水”的纳米材料打印到原理证明宏观器件(如磁致动器或光子晶体)中的方法。该研究计划的短期科学目标将包括:首先,设计和合成无机超顺磁性和铁磁性纳米材料,这些材料可以结合并交联到大分子聚合物3D打印材料中。我们将借鉴基于文献的方法,以及我在研究生和博士后培训期间使用几种无机磁性纳米材料时亲自开发的方法,以合成超顺磁性氧化铁和铁磁性钴,铁和铁铂纳米颗粒。几种现有的文献方法导致脂肪族磁性纳米颗粒,因此我们将进行适当的配体交换化学以产生具有溶解度和功能性的磁性纳米颗粒,以在纳米颗粒之间形成共价连接,从而形成有序的纳米颗粒超晶格结构,或者在纳米材料和聚合物支架之间形成共价交联连接。在优化纳米颗粒设计之后,我们将通过实验验证超晶格尺寸、浓度和聚合物支架设计参数对不同纳米材料墨水的物理性质(磁性、流变性等)的影响。在开发出合适的复合“墨水”后,我们将使用立体光刻设备3D打印方法制造原理验证宏观器件。第一个设备将证明复合“墨水”可以用于打印单个夹持悬臂形状的磁致动器。通过控制磁性纳米颗粒的类型和质量,我们应该能够证明使用外部磁力对偏转的实验控制。这些实验将与使用COMSOL Multiphysics或ANSYS获得的模拟结果进行比较。使用类似的方法,我们将试图证明,打印有序阵列的纳米粒子超晶格结构的三维聚合物矩阵可以用来开发原理光子晶体的证据。虽然文献中先前的演示已经表明,磁性纳米颗粒的有序周期性阵列或链可以用于产生可调光子晶体,但该演示将试图成为第一个能够将光子晶体元件集成到宏观器件中的定义位置。虽然这两种设备将展示能够将纳米材料作为功能材料用于简单宏观设备的3D打印的潜力,但它们只是简单地展示了如何增加用于软3D打印的材料的调色板可能有潜力显着提高3D打印技术的能力。拟议的研究计划有可能培养11名HQP(2名博士,2名工程硕士,7名本科生研究人员),他们来自跨学科(纳米技术和3D打印)工程领域的各个教育阶段,许多经济学家预测在未来十年将有巨大的增长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kinsella, Joseph其他文献
Kinsella, Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kinsella, Joseph', 18)}}的其他基金
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Economic conversion of forest biomass into lignocellulosic nanomaterials for advanced applications
将森林生物质经济转化为先进应用的木质纤维素纳米材料
- 批准号:
555605-2020 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Idea to Innovation
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Fundamental Insights into Direct Optical Lithography of Functional Inorganic Nanomaterials (DOLFIN)
功能无机纳米材料直接光学光刻的基本见解 (DOLFIN)
- 批准号:
1905290 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
DGECR-2018-00283 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual