Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
基本信息
- 批准号:RGPIN-2014-06671
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While substantial strides have been made in the development of large-scale processes to create nanomaterials, several challenges remain when trying to integrate nanoparticles with specific alignment and registration into macroscopic devices at millimeter and greater scales. This research program will focus on two long term visions, (i) developing new types of composite material “inks” compatible with commercially available 3D printers that consist of inorganic magnetic nanomaterials and polymeric scaffolds, and (ii) developing the methodology to print these nanomaterial containing “inks” into proof of principle macroscopic devices such as magnetic actuators or photonic crystals. The short-term scientific objectives of this research program will include: first, to design and synthesize inorganic superparamagnetic and ferromagnetic nanomaterials that can be incorporated, and cross-linked, into macromolecular polymeric 3D printed materials. We will draw on literature based methods, as well as those that I have developed personally while working with several types of inorganic magnetic nanomaterials during my graduate and postdoctoral training, to synthesize superparamagnetic iron oxides and ferromagnetic cobalt, iron, and iron platinum nanoparticles. Several of the existing literature methods result in aliphatic magnetic nanoparticles so we will perform the appropriate ligand exchange chemistry to produce magnetic nanoparticles with the solubility and functionality to form covalent attachment amongst nanoparticles to form ordered nanoparticle superlattice structures, or alternatively to form covalent crosslinking attachments between the nanomaterials and the polymeric scaffolding. After optimizing the nanoparticle design we will then experimentally verify the effect of superlattice size, concentration, and polymeric scaffold design parameters on the physical properties (magnetic, rheological, etc) of different nanomaterial inks. Upon developing a suitable composite “ink” we will fabricate proof-of-principle macroscale devices using a stereolithographic apparatus 3D printing approach. The first device would be to demonstrate that the composite “ink” can be used to print a single clamped cantilever shaped magnetic actuator. By controlling the type, and mass, of magnetic nanoparticles incorporated into the cantilever we should be able to demonstrate experimental control over the deflection using external magnetic forces. These experiments will be compared to simulation results obtained using COMSOL Multiphysics or ANSYS. Using similar methods we will attempt to demonstrate that printing ordered arrays of nanoparticle superlattice structures in three-dimensional polymeric matrices could be used to develop a proof of principle photonic crystal. While previous demonstrations in the literature have shown that ordered periodic arrays or chains of magnetic nanoparticles can be used to produce tunable photonic crystals this demonstration would attempt to be the first to be able to integrate the photonic crystal elements into macroscopic devices at defined locations. While these two devices would demonstrate the potential of being able to incorporate nanomaterials as functional materials for 3D printing of simple macroscopic devices they are simple demonstrations of how increasing the palette of materials useful for soft 3D printing may have the potential to significantly increase the capabilities of 3D printing technology. The proposed research program has the potential to train eleven HQP (2 PhD, 2 MEng, 7 undergraduate researchers) from all stages of education in an interdisciplinary (nanotechnology and 3D printing) area of engineering that many economists are predicting to have tremendous growth in the coming decade.
虽然在开发制造纳米材料的大规模工艺方面取得了实质性进展,但在尝试将具有特定排列和配准的纳米颗粒集成到毫米级和更大尺度的宏观设备中时,仍然存在一些挑战。这项研究计划将专注于两个长期愿景,(I)开发与商用3D打印机兼容的新型复合材料“墨水”,包括无机磁性纳米材料和聚合物支架,以及(Ii)开发将这些含有“墨水”的纳米材料打印成原理宏观器件(如磁性致动器或光子晶体)的方法。这项研究计划的短期科学目标将包括:第一,设计和合成无机超顺磁性和铁磁纳米材料,这些材料可以并入并交联到大分子聚合物3D打印材料中。我们将利用基于文献的方法,以及我在研究生和博士后培训期间与几种类型的无机磁性纳米材料合作时个人开发的方法,来合成超顺磁性氧化铁和铁磁性钴、铁和铁铂纳米颗粒。现有的几种方法可以得到脂肪族磁性纳米粒子,因此我们将进行适当的配体交换化学来制备具有溶解性和功能性的磁性纳米粒子,以在纳米粒子之间形成共价连接,从而形成有序的纳米粒子超晶格结构,或者替代地,在纳米材料和聚合物支架之间形成共价交联连接。在优化纳米颗粒设计后,我们将通过实验验证超晶格尺寸、浓度和聚合物支架设计参数对不同纳米材料墨水的物理性能(磁性、流变性等)的影响。在开发出合适的复合“油墨”后,我们将使用立体平版设备3D打印方法来制造原理证明宏尺度器件。第一个装置将展示这种复合“墨水”可以用来打印单个固定的悬臂形磁致动器。通过控制加入到悬臂中的磁性纳米颗粒的类型和质量,我们应该能够演示使用外部磁力对偏转进行实验控制。这些实验将与使用COMSOL多物理或Ansys获得的模拟结果进行比较。使用类似的方法,我们将尝试证明,在三维聚合物基质中打印纳米粒子超晶格结构的有序阵列可以用来开发原理光子晶体的证明。虽然先前文献中的演示表明,磁性纳米颗粒的有序周期阵列或链可用于产生可调谐的光子晶体,但本演示将尝试第一个能够在指定位置将光子晶体元件集成到宏观器件中的演示。虽然这两个设备将展示将纳米材料作为功能材料结合在一起用于简单宏观设备的3D打印的潜力,但它们简单地展示了增加用于软3D打印的材料调色板可能具有显著提高3D打印技术能力的潜力。拟议中的研究计划有可能培养11名HQP(2名博士,2名孟加拉人,7名本科生研究人员),他们来自工程的各个阶段,涉及跨学科(纳米技术和3D打印)领域,许多经济学家预测,该领域在未来十年将有巨大的增长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kinsella, Joseph其他文献
Kinsella, Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kinsella, Joseph', 18)}}的其他基金
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
- 批准号:
RGPIN-2020-05692 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Economic conversion of forest biomass into lignocellulosic nanomaterials for advanced applications
将森林生物质经济转化为先进应用的木质纤维素纳米材料
- 批准号:
555605-2020 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Idea to Innovation
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Fundamental Insights into Direct Optical Lithography of Functional Inorganic Nanomaterials (DOLFIN)
功能无机纳米材料直接光学光刻的基本见解 (DOLFIN)
- 批准号:
1905290 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
DGECR-2018-00283 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Launch Supplement
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
- 批准号:
RGPIN-2014-06671 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual