Integrating Nanomaterials into 3D Printer Inks

将纳米材料集成到 3D 打印机墨水中

基本信息

  • 批准号:
    RGPIN-2014-06671
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

While substantial strides have been made in the development of large-scale processes to create nanomaterials, several challenges remain when trying to integrate nanoparticles with specific alignment and registration into macroscopic devices at millimeter and greater scales. This research program will focus on two long term visions, (i) developing new types of composite material "inks" compatible with commercially available 3D printers that consist of inorganic magnetic nanomaterials and polymeric scaffolds, and (ii) developing the methodology to print these nanomaterial containing "inks" into proof of principle macroscopic devices such as magnetic actuators or photonic crystals. The short-term scientific objectives of this research program will include: first, to design and synthesize inorganic superparamagnetic and ferromagnetic nanomaterials that can be incorporated, and cross-linked, into macromolecular polymeric 3D printed materials. We will draw on literature based methods, as well as those that I have developed personally while working with several types of inorganic magnetic nanomaterials during my graduate and postdoctoral training, to synthesize superparamagnetic iron oxides and ferromagnetic cobalt, iron, and iron platinum nanoparticles. Several of the existing literature methods result in aliphatic magnetic nanoparticles so we will perform the appropriate ligand exchange chemistry to produce magnetic nanoparticles with the solubility and functionality to form covalent attachment amongst nanoparticles to form ordered nanoparticle superlattice structures, or alternatively to form covalent crosslinking attachments between the nanomaterials and the polymeric scaffolding. After optimizing the nanoparticle design we will then experimentally verify the effect of superlattice size, concentration, and polymeric scaffold design parameters on the physical properties (magnetic, rheological, etc) of different nanomaterial inks. Upon developing a suitable composite "ink" we will fabricate proof-of-principle macroscale devices using a stereolithographic apparatus 3D printing approach. The first device would be to demonstrate that the composite "ink" can be used to print a single clamped cantilever shaped magnetic actuator. By controlling the type, and mass, of magnetic nanoparticles incorporated into the cantilever we should be able to demonstrate experimental control over the deflection using external magnetic forces. These experiments will be compared to simulation results obtained using COMSOL Multiphysics or ANSYS. Using similar methods we will attempt to demonstrate that printing ordered arrays of nanoparticle superlattice structures in three-dimensional polymeric matrices could be used to develop a proof of principle photonic crystal. While previous demonstrations in the literature have shown that ordered periodic arrays or chains of magnetic nanoparticles can be used to produce tunable photonic crystals this demonstration would attempt to be the first to be able to integrate the photonic crystal elements into macroscopic devices at defined locations. While these two devices would demonstrate the potential of being able to incorporate nanomaterials as functional materials for 3D printing of simple macroscopic devices they are simple demonstrations of how increasing the palette of materials useful for soft 3D printing may have the potential to significantly increase the capabilities of 3D printing technology. The proposed research program has the potential to train eleven HQP (2 PhD, 2 MEng, 7 undergraduate researchers) from all stages of education in an interdisciplinary (nanotechnology and 3D printing) area of engineering that many economists are predicting to have tremendous growth in the coming decade.
虽然在制造纳米材料的大规模工艺开发方面取得了实质性进展,但在试图将具有特定排列和配准的纳米颗粒集成到毫米及更大尺度的宏观设备中时,仍然存在一些挑战。该研究项目将专注于两个长期愿景,(i)开发新型复合材料“墨水”,与商用3D打印机兼容,该打印机由无机磁性纳米材料和聚合物支架组成,以及(ii)开发方法,将这些含有“墨水”的纳米材料打印成原理证明宏观设备,如磁执行器或光子晶体。该研究计划的短期科学目标将包括:首先,设计和合成无机超顺磁性和铁磁性纳米材料,这些纳米材料可以被纳入大分子聚合物3D打印材料中,并进行交联。我们将借鉴基于文献的方法,以及我在研究生和博士后培训期间与几种无机磁性纳米材料一起工作时亲自开发的方法,合成超顺磁性氧化铁和铁磁性钴、铁和铁铂纳米颗粒。现有的几种文献方法产生了脂肪族磁性纳米颗粒,因此我们将进行适当的配体交换化学,以产生具有溶解度和功能的磁性纳米颗粒,在纳米颗粒之间形成共价连接,形成有序的纳米颗粒超晶格结构,或者在纳米材料和聚合物支架之间形成共价交联连接。优化纳米颗粒设计后,我们将通过实验验证超晶格尺寸、浓度和聚合物支架设计参数对不同纳米材料油墨物理性质(磁性、流变性等)的影响。在开发出合适的复合“墨水”后,我们将使用立体光刻设备3D打印方法制造原理验证的宏观设备。第一个装置是证明复合“墨水”可以用来打印一个夹紧的悬臂形磁致动器。通过控制类型和质量,磁性纳米颗粒纳入悬臂梁,我们应该能够证明实验控制偏转使用外部磁力。这些实验将与使用COMSOL Multiphysics或ANSYS获得的仿真结果进行比较。使用类似的方法,我们将尝试证明在三维聚合物基质中打印纳米粒子超晶格结构的有序阵列可用于开发光子晶体的原理证明。虽然先前的文献演示表明,有序的周期阵列或磁性纳米颗粒链可以用来生产可调谐的光子晶体,但这次演示将试图成为第一个能够将光子晶体元素集成到宏观器件中,在确定的位置。虽然这两种设备将展示能够将纳米材料作为简单宏观设备的3D打印功能材料的潜力,但它们只是简单的演示,如何增加对软3D打印有用的材料调色板可能有可能显着提高3D打印技术的能力。拟议的研究计划有可能从跨学科(纳米技术和3D打印)工程领域的各个教育阶段培养11名HQP(2名博士,2名bbb, 7名本科研究人员),许多经济学家预测未来十年将有巨大的增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kinsella, Joseph其他文献

Kinsella, Joseph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kinsella, Joseph', 18)}}的其他基金

Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
  • 批准号:
    RGPIN-2020-05692
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
  • 批准号:
    RGPIN-2020-05692
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Programmable Materials for Bioprinting
开发用于生物打印的可编程材料
  • 批准号:
    RGPIN-2020-05692
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Economic conversion of forest biomass into lignocellulosic nanomaterials for advanced applications
将森林生物质经济转化为先进应用的木质纤维素纳米材料
  • 批准号:
    555605-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Idea to Innovation
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Insights into Direct Optical Lithography of Functional Inorganic Nanomaterials (DOLFIN)
功能无机纳米材料直接光学光刻的基本见解 (DOLFIN)
  • 批准号:
    1905290
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    DGECR-2018-00283
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Launch Supplement
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Nanomaterials into 3D Printer Inks
将纳米材料集成到 3D 打印机墨水中
  • 批准号:
    RGPIN-2014-06671
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了