Geometric and topological methods in statistics
统计学中的几何和拓扑方法
基本信息
- 批准号:46204-2011
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistics is challenged by massive multi-dimensional data. The challenges are in representation, visualization, interpretation and analysis, requiring the development of new statistical methodologies, and these advances are dependent on ever more increasing technical sophistication. The main objective of this proposed research program is to examine two such emerging areas: geometric statistics; and, statistical topology.
Geometric statistics is concerned with parameter estimation over Riemannian manifolds, where the recovery of the underlying geometric parameter that generates the data is of quantitative statistical interest. Statistical topology, is concerned with recovering topological parameters which are qualitative global features, such as connectedness, or the number of holes, or the existence of obstructions to certain constructions. With the quantitative approach one can obtain qualitative topological information where the pathway between them can be established by using elements of Morse theory. This framework thus provides an abundant enough statistical structure for examining the statistical properties of topological parameters through geometric parameters.
One of the areas where we have seen explosive growth of massive multi-dimensional object data is in medical imaging. Due to technological advances in medical scanners, the resolution of voxel data is now extremely detailed. Techniques using geometric statistics have witnessed tremendous proliferation with the need for greater technical sophistication being evident. This research program intends to build upon this and provide contributions both through quantitative approach, as well the qualitative approach. The latter is really frontier, and is only now starting to be appreciated, particularly so for it's ability to clinically discriminate between sub-populations. Other application areas where attention will be given are in bioinformatics, biomechanics, microwave engineering, orthodontal data, and quantum information processing.
统计学面临着海量多维数据的挑战。 挑战在于表述、可视化、解释和分析,需要发展新的统计方法,而这些进展取决于日益复杂的技术。这项研究计划的主要目标是研究两个新兴领域:几何统计和统计拓扑。
几何统计学关注黎曼流形上的参数估计,其中生成数据的基本几何参数的恢复具有定量统计意义。 统计拓扑学,涉及恢复拓扑参数,这些参数是定性的全局特征,例如连通性,或孔的数量,或某些结构的障碍物的存在。与定量的方法,可以获得定性的拓扑信息,其中它们之间的路径可以通过使用元素的莫尔斯理论建立。 因此,这个框架提供了一个足够丰富的统计结构,通过几何参数检查拓扑参数的统计特性。
我们已经看到大量多维对象数据爆炸性增长的领域之一是医学成像。由于医疗扫描仪的技术进步,体素数据的分辨率现在非常详细。使用几何统计的技术已经见证了巨大的扩散,显然需要更高的技术复杂性。本研究计划旨在建立在此基础上,并通过定量方法和定性方法提供贡献。后者是真正的前沿,现在才开始受到重视,特别是它在临床上区分亚群的能力。其他的应用领域,将给予关注的是在生物信息学,生物力学,微波工程,orthodynamics数据,和量子信息处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, Peter其他文献
Successful Corneal Autograft After Clearance of Anterior Chamber Cytomegalovirus With Oral Valganciclovir in a Patient With Multiple Failed Corneal Allografts
- DOI:
10.1097/ico.0b013e3182120f73 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.8
- 作者:
Lusthaus, Jed A.;Kim, Peter;Wechsler, Alfred W. - 通讯作者:
Wechsler, Alfred W.
Risk factors for degenerative, symptomatic rotator cuff tears: a case-control study.
- DOI:
10.1016/j.jse.2021.10.006 - 发表时间:
2022-04 - 期刊:
- 影响因子:3
- 作者:
Song, Amos;Cannon, Damien;Kim, Peter;Ayers, Gregory D.;Gao, Chan;Giri, Ayush;Jain, Nitin B. - 通讯作者:
Jain, Nitin B.
Use of Advance Care Planning Billing Codes in a Tertiary Care Center Setting
- DOI:
10.3122/jabfm.2019.06.190121 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:2.9
- 作者:
Kim, Peter;Daly, Jeanette M.;Levy, Barcey T. - 通讯作者:
Levy, Barcey T.
Increased risk of malignancy for patients older than 40 years with appendicitis and an appendix wider than 10 mm on computed tomography scan: A post hoc analysis of an EAST multicenter study
- DOI:
10.1016/j.surg.2020.05.044 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:3.8
- 作者:
Naar, Leon;Kim, Peter;Kaafarani, Haytham M. A. - 通讯作者:
Kaafarani, Haytham M. A.
Structured Nonsurgical Asian Rhinoplasty
- DOI:
10.1007/s00266-012-9869-2 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:2.4
- 作者:
Kim, Peter;Ahn, Joon-Tae - 通讯作者:
Ahn, Joon-Tae
Kim, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, Peter', 18)}}的其他基金
Exponential Models on Manifolds
流形上的指数模型
- 批准号:
RGPIN-2022-02945 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Orbifold Gromov-Witten理论研究
- 批准号:11171174
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760527 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760485 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760471 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760538 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Geometric and topological methods in statistics
统计学中的几何和拓扑方法
- 批准号:
46204-2011 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and topological methods in statistics
统计学中的几何和拓扑方法
- 批准号:
46204-2011 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Integrating Geometric, Probabilistic, and Topological Methods for Phase Space Transport in Dynamical Systems
职业:集成几何、概率和拓扑方法用于动力系统中的相空间传输
- 批准号:
1150456 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Geometric and topological methods in statistics
统计学中的几何和拓扑方法
- 批准号:
46204-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and topological methods in statistics
统计学中的几何和拓扑方法
- 批准号:
46204-2011 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual