FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
基本信息
- 批准号:1760485
- 负责人:
- 金额:$ 56.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As we interact with our environment we constantly assess, measure, and compare the objects within it. Our perception of such objects, either with our eyes, or through the results of scanners, is determined by their shapes, which are themselves characterized by the geometry of their surfaces. We are currently experiencing an explosion of discrete geometric data on shapes of objects obtained from scanners, cameras, imaging systems, sensors, satellites, and even cell phones. There is an urgent need for this geometric data to be processed automatically, for shape matching, shape comparison, and shape recognition. This need arises in areas such as facial recognition, identifying and classifying fossilized bones, distinguishing fractures in bones, diagnosing tumors and anomalies in organs, and measuring changes over time in brain images. Creating a mathematical theory and developing algorithms to recognize and to align such geometric shapes are therefore major research challenges that have far-reaching implications. Deep mathematical theories in geometry and analysis that were developed over the past centuries are now finding applications in this field of shape matching. This project explores fundamental issues in this exciting area, which is on the cusp of seeing major advances. It does so by using the theory of conformal, harmonic, and isometric mappings to align surfaces. While these theories have been extensively studied in a mathematical context, their adaptation to computational algorithms is still under development. This project develops a cohesive and comprehensive theoretical framework for this emerging discipline along with concrete connections to scientific applications. It plans to implement and make publicly available a collection of software that will offer new tools and will open new lines of inquiry to scientists in biology, medicine, anthropology and other fields where the analysis of shape plays a central role.The surfaces in our three-dimensional world can be described mathematically as two-dimensional Riemannian manifolds. Study of the geometric structures on such surfaces is a central topic in mathematical areas such as topology and differential geometry. It leads to classical theories of conformal geometry, moduli spaces, harmonic and conformal maps, and Riemann surfaces. These fields are now being applied to study surfaces of bones, brain cortices, proteins and other bio-molecules. When viewing an object with a laser, or radar, or CAT scan, we obtain a discrete representation of such a surface. Classical theories are inadequate for processing this real world data. This project will develop discrete counterparts of conformal and harmonic maps of surfaces, explore their existence, uniqueness, and diffeomorphism properties, and establish the convergence of the discrete theory to the classical smooth theory. It will also create and implement algorithms that incorporate this theory to create usable software for scientists and other practitioners. In this way, this project will bridge the gap between the mathematical theories of geometry and topology and the application of such ideas to algorithmic analysis of shape data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当我们与环境互动时,我们不断地评估、测量和比较环境中的物体。我们对这些物体的感知,无论是用我们的眼睛,还是通过扫描仪的结果,都是由它们的形状决定的,而这些形状本身又以其表面的几何形状为特征。 目前,我们正在经历从扫描仪、相机、成像系统、传感器、卫星甚至手机获得的有关物体形状的离散几何数据的爆炸式增长。迫切需要自动处理这些几何数据,以进行形状匹配、形状比较和形状识别。这种需求出现在面部识别、骨骼化石识别和分类、区分骨骼骨折、诊断肿瘤和器官异常以及测量大脑图像随时间变化等领域。 因此,创建数学理论并开发算法来识别和对齐此类几何形状是具有深远影响的主要研究挑战。过去几个世纪发展起来的几何和分析方面的深刻数学理论现在正在形状匹配这一领域得到应用。该项目探讨了这个令人兴奋的领域的基本问题,该领域即将取得重大进展。它通过使用共形、调和和等距映射理论来对齐表面来实现这一点。虽然这些理论已在数学背景下得到广泛研究,但它们对计算算法的适应仍在开发中。该项目为这一新兴学科开发了一个连贯且全面的理论框架以及与科学应用的具体联系。它计划实施并向公众提供一系列软件,这些软件将提供新工具,并为生物学、医学、人类学和形状分析发挥核心作用的其他领域的科学家开辟新的研究方向。三维世界中的表面可以在数学上描述为二维黎曼流形。对此类表面上的几何结构的研究是拓扑和微分几何等数学领域的中心主题。它引出了共形几何、模空间、调和和共形映射以及黎曼曲面的经典理论。这些领域现在被应用于研究骨骼、大脑皮层、蛋白质和其他生物分子的表面。当用激光、雷达或 CAT 扫描观察物体时,我们获得了该表面的离散表示。经典理论不足以处理现实世界的数据。该项目将开发表面的共形和调和映射的离散对应物,探索它们的存在性、唯一性和微分同胚性质,并建立离散理论与经典光滑理论的收敛性。它还将创建和实现结合该理论的算法,为科学家和其他从业者创建可用的软件。通过这种方式,该项目将弥合几何和拓扑的数学理论与这些思想在形状数据算法分析中的应用之间的差距。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast computation of exact solutions of generic and degenerate assignment problems
快速计算一般和退化分配问题的精确解
- DOI:10.1103/physreve.103.042101
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Koehl, Patrice;Orland, Henri
- 通讯作者:Orland, Henri
Stable Evaluation of 3D Zernike Moments for Surface Meshes
表面网格 3D Zernike 矩的稳定评估
- DOI:10.3390/a15110406
- 发表时间:2022
- 期刊:
- 影响因子:2.3
- 作者:Houdayer, Jérôme;Koehl, Patrice
- 通讯作者:Koehl, Patrice
Computing the Gromov-Wasserstein Distance between Two Surface Meshes Using Optimal Transport
- DOI:10.3390/a16030131
- 发表时间:2023-02
- 期刊:
- 影响因子:2.3
- 作者:P. Koehl;M. Delarue;H. Orland
- 通讯作者:P. Koehl;M. Delarue;H. Orland
Sampling constrained stochastic trajectories using Brownian bridges
使用布朗桥对约束随机轨迹进行采样
- DOI:10.1063/5.0102295
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Koehl, Patrice;Orland, Henri
- 通讯作者:Orland, Henri
Numerical Encodings of Amino Acids in Multivariate Gaussian Modeling of Protein Multiple Sequence Alignments
蛋白质多序列比对多元高斯模型中氨基酸的数值编码
- DOI:10.3390/molecules24010104
- 发表时间:2019
- 期刊:
- 影响因子:4.6
- 作者:Koehl, Patrice;Orland, Henri;Delarue, Marc
- 通讯作者:Delarue, Marc
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Hass其他文献
Probabilistic Estimates of Upset Caused by Single Event Transients
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Joel Hass - 通讯作者:
Joel Hass
Geodesics and soap bubbles in surfaces
- DOI:
10.1007/pl00004560 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:1.000
- 作者:
Joel Hass;Frank Morgan - 通讯作者:
Frank Morgan
Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme
- DOI:
10.1007/s10444-005-7539-5 - 发表时间:
2006-08-09 - 期刊:
- 影响因子:2.100
- 作者:
Joel Hass;Rida T. Farouki;Chang Yong Han;Xiaowen Song;Thomas W. Sederberg - 通讯作者:
Thomas W. Sederberg
Joel Hass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Hass', 18)}}的其他基金
Fast Algorithms for Special Functions
特殊函数的快速算法
- 批准号:
1818820 - 财政年份:2018
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
Geometry and Topology of 3-manifolds Conference
三流形几何与拓扑会议
- 批准号:
1758107 - 财政年份:2018
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
Computing Optimal Alignments of Surfaces
计算表面的最佳对齐方式
- 批准号:
1719582 - 财政年份:2017
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
Conference on Future Directions in 3-Dimensional Topology; May 6-9, 2005; Ann Arbor, MI
三维拓扑未来方向会议;
- 批准号:
0455864 - 财政年份:2005
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
Complexity of algorithms in low-dimensional topology
低维拓扑算法的复杂性
- 批准号:
0306602 - 财政年份:2003
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
Low-dimensional manifolds and computation
低维流形和计算
- 批准号:
0072348 - 财政年份:2000
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Surfaces in Three Dimensional Manifolds
数学科学:三维流形中的曲面几何
- 批准号:
9704286 - 财政年份:1997
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences "Normal Surface & Decision Problems in 3-Manifolds" August 26-30, 1996
NSF/CBMS 数学科学区域会议“法线表面
- 批准号:
9522519 - 财政年份:1996
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology and Geometry of 3- Dimensional Manifolds
数学科学:3维流形的拓扑和几何
- 批准号:
9225055 - 财政年份:1993
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Topology of 3-Dimensional Manifolds
数学科学:三维流形的几何和拓扑
- 批准号:
9024796 - 财政年份:1991
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Continuing Grant














{{item.name}}会员




