Sensor-Adaptive Signal Processing for Dynamic Decision Making
用于动态决策的传感器自适应信号处理
基本信息
- 批准号:251246-2013
- 负责人:
- 金额:$ 5.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project conducts fundamental research in adaptive decision making in signal processing systems. It involves the interplay of Bayesian signal processing, stochastic optimization, stochastic control and game theory. Such adaptive decision making problems have recently received significant attention in diverse areas including sensor networks, cognitive radars, biosensing, and automated decision systems. These problems transcend classical statistical signal processing (which deals with extracting signals from noisy measure- ments) to address the deeper issue of how sensors and signal processing algorithms can use feedback control to adapt to their environment thereby leading to a smart reconfigurable sensing systems.
The research objectives of this project fall under the following three inter-related themes:
(i) Sensor Resource Management: The objective is to devise adaptive resource allocation algorithms in sensor systems that are seeking to estimate the state of an underlying stochastic dynamical system.
We are particularly interested in designing smart reconfigurable radars.
(ii) Decentralized Decision Making: Motivated by energy, sensing and communication constraints,
the aim is to devise autonomous strategies for individual sensors to activate themselves to detect events. Social learning and game theory will be used to synthesize and analyze decentralized decision making algorithms.
(iii) Active Sensing using Molecular Biosensors: Our objective is to apply the fundamental theory, algorithms and analysis developed above to a remarkable biosensor that was built recently.
The key unifying theme underpinning the above three objectives is the paradigm of sensor-adaptive signal processing: signal processing resources that adapt their behavior based on noisy measurements and previous decisions. Such adaptive decision making under uncertainty constitutes the fundamental theme of this project.
该项目进行信号处理系统中自适应决策的基础研究。它涉及贝叶斯信号处理,随机优化,随机控制和博弈论的相互作用。这种自适应决策问题最近受到了广泛的关注,包括传感器网络,认知雷达,生物传感和自动决策系统。这些问题超越了经典的统计信号处理(处理从噪声测量中提取信号),以解决传感器和信号处理算法如何使用反馈控制来适应其环境的更深层次的问题,从而导致智能可重构传感系统。
本项目的研究目标分为以下三个相互关联的主题:
(i)传感器资源管理:我们的目标是设计自适应资源分配算法的传感器系统,正在寻求估计一个潜在的随机动态系统的状态。
我们对设计智能可重构雷达特别感兴趣。
(ii)分散决策:受能源、传感和通信限制的影响,
其目的是为各个传感器设计自主策略,以激活它们自己来检测事件。社会学习和博弈论将用于综合和分析分散决策算法。
(iii)使用分子生物传感器的主动传感:我们的目标是将上述开发的基本理论,算法和分析应用于最近建造的显着生物传感器。
支撑上述三个目标的关键统一主题是传感器自适应信号处理的范例:信号处理资源根据噪声测量和先前的决策调整其行为。这种不确定性下的适应性决策构成了本项目的基本主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishnamurthy, Vikram其他文献
Inverse Filtering for Hidden Markov Models
隐马尔可夫模型的逆过滤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mattila, Robert;Rojas, Cristian;Krishnamurthy, Vikram;Wahlberg, Bo - 通讯作者:
Wahlberg, Bo
Adaptive Filtering Algorithms For Set-Valued Observations-Symmetric Measurement Approach To Unlabeled And Anonymized Data
集值观测的自适应过滤算法-未标记和匿名数据的对称测量方法
- DOI:
10.1109/icassp49357.2023.10094833 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Krishnamurthy, Vikram - 通讯作者:
Krishnamurthy, Vikram
Trovax, a recombinant modified vaccinia ankara virus encoding 5T4
- DOI:
10.4161/hv.6.10.13144 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:0
- 作者:
Kim, Dae Won;Krishnamurthy, Vikram;Kaufman, Howard L. - 通讯作者:
Kaufman, Howard L.
Convex Stochastic Dominance in Bayesian Localization, Filtering, and Controlled Sensing POMDPs
- DOI:
10.1109/tit.2019.2948598 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:2.5
- 作者:
Krishnamurthy, Vikram - 通讯作者:
Krishnamurthy, Vikram
Utility Change Point Detection in Online Social Media: A Revealed Preference Framework
- DOI:
10.1109/tsp.2016.2646667 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:5.4
- 作者:
Aprem, Anup;Krishnamurthy, Vikram - 通讯作者:
Krishnamurthy, Vikram
Krishnamurthy, Vikram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishnamurthy, Vikram', 18)}}的其他基金
Statistical Signal Processing
统计信号处理
- 批准号:
1000230782-2015 - 财政年份:2017
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Statistical Signal Processing
统计信号处理
- 批准号:
1000210862-2008 - 财政年份:2016
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Sensor-Adaptive Signal Processing for Dynamic Decision Making
用于动态决策的传感器自适应信号处理
- 批准号:
251246-2013 - 财政年份:2016
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing
统计信号处理
- 批准号:
1000230782-2015 - 财政年份:2016
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Radar identification and countermeasures
雷达识别与对抗
- 批准号:
474600-2014 - 财政年份:2016
- 资助金额:
$ 5.46万 - 项目类别:
Collaborative Research and Development Grants
User dynamics and sensitivity analysis of meta-data on the YouTube social network
YouTube 社交网络元数据的用户动态和敏感性分析
- 批准号:
478161-2015 - 财政年份:2015
- 资助金额:
$ 5.46万 - 项目类别:
Engage Grants Program
Radar identification and countermeasures
雷达识别与对抗
- 批准号:
474600-2014 - 财政年份:2015
- 资助金额:
$ 5.46万 - 项目类别:
Collaborative Research and Development Grants
Statistical Signal Processing
统计信号处理
- 批准号:
1210862-2008 - 财政年份:2015
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
Sensor-Adaptive Signal Processing for Dynamic Decision Making
用于动态决策的传感器自适应信号处理
- 批准号:
251246-2013 - 财政年份:2014
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing
统计信号处理
- 批准号:
1000210862-2008 - 财政年份:2014
- 资助金额:
$ 5.46万 - 项目类别:
Canada Research Chairs
相似海外基金
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
CAREER: Leveraging Signal Structure for Cost-Sensitive Adaptive Sampling
职业:利用信号结构进行成本敏感的自适应采样
- 批准号:
2046175 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
CCF: Small: Real-Number Function Encoding Driven Error Resilient Signal Processing and Control: Application to Nonlinear Systems from Adaptive Filters to DNNs
CCF:小型:实数函数编码驱动的误差弹性信号处理和控制:从自适应滤波器到 DNN 的非线性系统应用
- 批准号:
2128419 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
SBIR Phase II: Information fusion-driven adaptive corridor-wide traffic signal re-timing
SBIR第二阶段:信息融合驱动的自适应走廊交通信号重新定时
- 批准号:
2052257 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Cooperative Agreement
From adaptive signal processing to brain-inspired cognitive systems
从自适应信号处理到受大脑启发的认知系统
- 批准号:
RGPIN-2017-06424 - 财政年份:2021
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
From adaptive signal processing to brain-inspired cognitive systems
从自适应信号处理到受大脑启发的认知系统
- 批准号:
RGPIN-2017-06424 - 财政年份:2020
- 资助金额:
$ 5.46万 - 项目类别:
Discovery Grants Program - Individual
End-to-End Adaptive Signal Processing for Multiplexed Synthetic Aperture Radar
复用合成孔径雷达的端到端自适应信号处理
- 批准号:
20K14747 - 财政年份:2020
- 资助金额:
$ 5.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Wireless Communications using Signal Processing Design based on Conditional Mutual Information Norm Adaptive Quantization and Deep Learning
使用基于条件互信息范数自适应量化和深度学习的信号处理设计的无线通信
- 批准号:
19H02142 - 财政年份:2019
- 资助金额:
$ 5.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)