Statistics for Dynamic Models with Application in the Marine Sciences
动态模型统计在海洋科学中的应用
基本信息
- 批准号:293195-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Successful environmental prediction requires making effective use of simulation models and available observations. Statistical modeling provides a means of combining these two sources of information, as well as other scientific knowledge, in order to learn as much as possible about the system under consideration. This procedure is sometimes referred to as data assimilation, and is based on Bayesian statistical principles. Key application areas are in weather, climate, and marine forecasting. Special estimation methods must be developed and applied since complex environmental models are constantly being refined as scientific and computational advances are incorporated in the simulation code. Observations have become increasingly sophisticated ranging from monitoring time series, spatial imagery from satellites, and complex autonomous instruments that probe and adaptively transit the ocean depths. In the fusion of data and model lies the promise of more skillful environmental prediction, along with better scientific understanding of these systems. My proposed work deals with further development of advanced data assimilation that uses state-of-the-art statistical methods to move us towards this goal.
成功的环境预测需要有效地利用模拟模型和可用的观测数据。统计建模提供了一种将这两个信息源以及其他科学知识结合在一起的手段,以便尽可能多地了解所审议的系统。这一过程有时被称为数据同化,基于贝叶斯统计原理。关键应用领域是天气、气候和海洋预报。必须开发和应用特殊的估计方法,因为随着科学和计算的进步被纳入到模拟代码中,复杂的环境模型正在不断地得到完善。观测已变得越来越复杂,从监测时间序列、卫星提供的空间图像,到探测和自适应穿越海洋深处的复杂自主仪器。数据和模型的融合带来了更巧妙的环境预测,以及对这些系统更好的科学理解。我提议的工作涉及高级数据同化的进一步发展,它使用最先进的统计方法来推动我们实现这一目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dowd, Michael其他文献
Estimating parameters for a stochastic dynamic marine ecological system
- DOI:
10.1002/env.1083 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:1.7
- 作者:
Dowd, Michael - 通讯作者:
Dowd, Michael
Predator decline leads to decreased stability in a coastal fish community
- DOI:
10.1111/ele.12354 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:8.8
- 作者:
Britten, Gregory L.;Dowd, Michael;Lotze, Heike K. - 通讯作者:
Lotze, Heike K.
Extended fisheries recovery timelines in a changing environment
- DOI:
10.1038/ncomms15325 - 发表时间:
2017-05-19 - 期刊:
- 影响因子:16.6
- 作者:
Britten, Gregory L.;Dowd, Michael;Worm, Boris - 通讯作者:
Worm, Boris
A sequential Monte Carlo approach for marine ecological prediction
- DOI:
10.1002/env.780 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:1.7
- 作者:
Dowd, Michael - 通讯作者:
Dowd, Michael
Estimating time-dependent parameters for a biological ocean model using an emulator approach
- DOI:
10.1016/j.jmarsys.2012.01.015 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:2.8
- 作者:
Mattern, Jann Paul;Fennel, Katja;Dowd, Michael - 通讯作者:
Dowd, Michael
Dowd, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dowd, Michael', 18)}}的其他基金
Bayesian Data Assimilation
贝叶斯数据同化
- 批准号:
RGPIN-2017-05151 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Data Assimilation
贝叶斯数据同化
- 批准号:
RGPIN-2017-05151 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Data Assimilation
贝叶斯数据同化
- 批准号:
RGPIN-2017-05151 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Data Assimilation
贝叶斯数据同化
- 批准号:
RGPIN-2017-05151 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Dynamic Models with Application in the Marine Sciences
动态模型统计在海洋科学中的应用
- 批准号:
293195-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Dynamic Models with Application in the Marine Sciences
动态模型统计在海洋科学中的应用
- 批准号:
293195-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Dynamic Models with Application in the Marine Sciences
动态模型统计在海洋科学中的应用
- 批准号:
293195-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statisical estimation for nonlinear dynamic systems in the marine environmental sciences
海洋环境科学中非线性动力系统的贝叶斯统计估计
- 批准号:
293195-2007 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statisical estimation for nonlinear dynamic systems in the marine environmental sciences
海洋环境科学中非线性动力系统的贝叶斯统计估计
- 批准号:
293195-2007 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statisical estimation for nonlinear dynamic systems in the marine environmental sciences
海洋环境科学中非线性动力系统的贝叶斯统计估计
- 批准号:
293195-2007 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Enhancing Dynamic Population-Level Epidemiological Models by Incorporating Wastewater Surveillance Data
LEAPS-MPS:通过纳入废水监测数据来增强动态人口水平流行病学模型
- 批准号:
2316809 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Dynamic Earth Models for Frontier Mineral Exploration
前沿矿产勘探的动态地球模型
- 批准号:
LP220100056 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Linkage Projects
DV3M: Deforming Volcanoes with Dynamic Magma-Mush Models
DV3M:使用动态岩浆模型使火山变形
- 批准号:
NE/X013944/1 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Research Grant
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
RUI: A New Paradigm for AGN Obscuration: Observational Constraints for Dynamic Torus Models
RUI:AGN 遮蔽的新范式:动态环面模型的观测约束
- 批准号:
2308393 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Dynamic prediction of type 1 diabetes risk and autoantibody status by a joint model of longitudinal and multistate models
通过纵向和多状态模型的联合模型动态预测1型糖尿病风险和自身抗体状态
- 批准号:
10630731 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
- 批准号:
10622713 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Developing Pareto front models for the improved description of plant's dynamic root system architecture
开发帕累托前沿模型以改进植物动态根系结构的描述
- 批准号:
2244735 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
- 批准号:
2311162 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant